Browse > Article
http://dx.doi.org/10.4134/JKMS.j150597

ON HIGHER ORDER IRREGULAR SETS  

Li, Jinjun (School of Mathematics and Statistics Minnan Normal University)
Wu, Min (Department of Mathematics South China University of Technology)
Publication Information
Journal of the Korean Mathematical Society / v.54, no.1, 2017 , pp. 87-99 More about this Journal
Abstract
To indicate the statistical complexity of dynamical systems, we introduce the notions of higher order irregular set and higher order maximal Birkhoff average oscillation in this paper. We prove that, in the setting of topologically mixing Markov chain, the set consisting of those points having maximal k-order Birkhoff average oscillation for all positive integers k is as large as the whole space from the topological point of view. As applications, we discuss the corresponding results on a repeller.
Keywords
higher order irregular set; higher order maximal Birkhoff average oscillation; residual;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Albeverio, M. Pratsiovytyi, and G. Torbin, Topological and fractal properties of real numbers which are not normal, Bull. Sci. Math. 129 (2005), no. 8, 615-630.   DOI
2 I. S. Baek and L. Olsen, Baire category and extremely non-normal points of invariant sets of IFS's, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 935-943.   DOI
3 L. Barreira, J. J. Li, and C. Valls, Irregular sets are residual, Tohoku Math. J. 66 (2014), no. 4, 471-489.   DOI
4 L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math. 116 (2000), 29-70.   DOI
5 C. Bonatti, L. Diaz, and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, 2005.
6 E. C. Chen, K. Tassilo, and L. Shu, Topological entropy for divergence points, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1173-1208.   DOI
7 M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Space, volume 527 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976.
8 D.-J. Feng, K.-S. Lau, and J. Wu, Ergodic limits on the conformal repellers, Adv. Math. 169 (2002), no. 1, 58-91.   DOI
9 A. H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space, J. Stat. Phys. 99 (2000), no. 3-4, 813-856.   DOI
10 A. H. Fan, D.-J. Feng, and J. Wu, Recurrence, dimensions and entropies, J. London Math. Soc. 64 (2001), no. 1, 229-244.   DOI
11 J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz, and A. Shaw, Iterated Cesaro averages, frequencies of digits and Baire category, Acta Arith. 144 (2010), no. 3, 287-293.   DOI
12 T. Jordan, V. Naudot, and T. Young, Higher order Birkhoff averages, Dyn. Syst. 24 (2009), no. 3, 299-313.   DOI
13 J. J. Li and M. Wu, Divergence points in systems satisfying the specification property, Discrete Contin. Dyn. Syst. 33 (2013), no. 2, 905-920.   DOI
14 L. Barreira, J. J. Li, and C. Valls, Irregular sets of two-sided Birkhoff averages and hyperbolic sets, Ark. Mat. 54 (2016), no. 1, 13-30.   DOI
15 J. J. Li and M. Wu, The sets of divergence points of self-similar measures are residual, J. Math. Anal. Appl. 404 (2013), no. 2, 429-437.   DOI
16 L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl. 82 (2003), no. 12, 1591-1649.   DOI
17 J. J. Li and M. Wu, Generic property of irregular sets in systems satisfying the specification property, Discrete Contin. Dyn. Syst. 34 (2014), 635-645.
18 J. J. Li and M. Wu, Points with maximal Birkhoff average oscillation, Czechoslovak Math. J. 66(141) (2016), no. 1, 223-241.
19 J. J. Li, M. Wu, and Y. Xiong, Hausdorff dimensions of the divergence points of self-similar measures with the open set condition, Nonlinearity 25 (2012), no. 1, 93-105.   DOI
20 M. Madritsch, Non-normal numbers with respect to Markov partitions, Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 663-676.   DOI
21 L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 43-53.   DOI
22 L. Olsen, Higher order local dimensions and Baire category, Studia Math. 211 (2011), no. 1, 1-20.   DOI
23 J. C. Oxtoby, Measre and Category, Springer, New York, 1996.
24 Y. Pesin and B. S. Pitskel, Topological pressure and variational principle for non-compact sets, Functional Anal. Appl. 18 (1984), 307-318.   DOI
25 M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Comm. Math. Phys. 207 (1999), no. 1, 145-171.   DOI
26 D. Ruelle, Thermodynamic Formalism: The mathematical structures of classical equilibrium statistical mechanics, Ency. Math. and Appl. Vol 5, Addison Wesley, 1978.
27 D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dyn. Syst. 25 (2010), no. 1, 25-51.   DOI