• Title/Summary/Keyword: time-varying linear systems

Search Result 321, Processing Time 0.026 seconds

Delay-dependent Robust Stability of Discrete-time Uncertain Delayed Descriptor Systems using Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 불확실 지연 특이시스템의 지연종속 강인 안정성)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • This paper considers the problem of robust stability for uncertain discrete-time interval time-varying delayed descriptor systems using any combinations of quantization and overflow nonlinearities. First, delay-dependent linear matrix inequality (LMI) condition for discrete-time descriptor systems with time-varying delay and quantization/overflow nonlinearities is presented by proper Lyapunov function. Second, it is shown that the obtained condition can be extended into descriptor systems with uncertainties such as norm-bounded parameter uncertainties and polytopic uncertainties by some useful lemmas. The proposed results can be applied to both descriptor systems and non-descriptor systems. Finally, numerical examples are shown to illustrate the effectiveness and less conservativeness.

Robust Control of Linear Systems Under Structured Nonlinear Time-Varying Perturbations II : Synthesis via Convex Optimazation

  • Bambang, Riyanto-T.;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.100-104
    • /
    • 1993
  • In Part 1, we derived robust stability conditions for an LTI interconnected to time-varying nonlinear perturbations belonging to several classes of nonlinearities. These conditions were presented in terms of positive definite solutions to LMI. In this paper we address a problem of synthesizing feedback controllers for linear time-invariant systems under structured time-varying uncertainties, combined with a worst-case H$_{2}$ performance. This problem is introduced in [7, 8, 15, 35] in case of time-invariant uncertainties, where the necessary conditions involve highly coupled linear and nonlinear matrix equations. Such coupled equations are in general difficult to solve. A convex optimization approach will be employed in this synthesis problem in order to avoid solving highly coupled nonlinear matrix equations that commonly arises in multiobjective synthesis problem. Using LMI formulation, this convex optimization problem can in turn be cast as generalized eigenvalue minimization problem, where an attractive algorithm based on the method of centers has been recently introduced to find its solution [30, 361. In the present paper we will restrict our discussion to state feedback case with Popov multipliers. A more general case of output feedback and other types of multipliers will be addressed in a future paper.

  • PDF

Asymptotic Stabilization of Linear Systems with Time-Varying Input Disturbances Using Disturbance Observer Techniques and Min-Max Control Method (외란관측기법과 최대최소 제어방법을 이용한 시변 입력 외란을 갖는 선형 시스템의 점근 안정화)

  • 송성호;김백섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • This paper deals with asymptotic stabilization problems for linear systems with time-varying input disturbances. In order to eliminate the influence of a disturbance on the system, a disturbance observer is designed and the time-varying disturbance can be rejected using its estimated value. Since the disturbance observer is kind of low-pass filter, it has inevitably estimation errors. To eliminate the inflences on the performance due to these errors, the additional control is designed based on these estimation errors using a well-known min-max control method. It is shown that the asymptotic stability of the closed-loop system is guaranteed. In general, the min-max control method requires the switching of control inputs and the switching magnitude of the control input is determined by the disturbance estimation error bounds. As the error bounds can be made arbitrarily small by choosing the high gain for the disturbance observer, the control method suggested in this paper can reduce the chattering phenomena as small as possible. Therefore, it has superior performance to the existing ones.

The Interpreter Controllability and Observability for a Class of Time-varying Linear System via I/S and I/O Transformation (입력-상태, 입력-출력 변환을 이용한 선형 시변 시스템의 가제어성, 가관측성 해석)

  • Won, Young-Jin;Lee, Sang-Hun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, we consider the controllability and observability for the time-varying linear system using the input-state(I/O), input-output(I/O) transformation and get the time-invarying linear system. The transformed system represent the system with the multiple integral. We verify the proposal algorithm via the example and examine.

The Controller Design for a Class of Time-Varying Linear System via I/O Transformation (입출력 변환을 이용한 선형 시변 시스템의 제어기 설계)

  • Cho, Do-Hyeoun;Lee, Sang-Hun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we consider the input-output(I/O) transformation for the time-varying linear system and get the time-invarying linear system. And we present the necessary sufficient condition for the I/O transformation. The transformed system represent the system with the multiple integral. We verify the proposal algorithm via the example and examine.

Stability of Linear Systems with Interval Time-varying Delay via New Interval Decomposition (새로운 구간 분해 방법을 이용한 구간 시변지연을 갖는 선형시스템의 안정성)

  • Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1748-1753
    • /
    • 2011
  • In this paper, we consider the stability of linear systems with an interval time-varying delay. It is known that the adoption of decomposition of delay improves the stability result. For the interval time-delay case, they applied it to the interval of time-delay and got less conservative results. Our basic idea is to apply the general decomposition to the low limit of delay as well as interval of time-delay. Based on this idea, by using the modified Lyapunov-Krasovskii functional and newly derived Lemma, we present a less conservative stability criterion expressed as in the form of linear matrix inequality(LMI). Finally, we show, by well-known two examples, that our result is less conservative than the recent results.

Robust Pole Assignment Design for Linear Time-varying Uncertain Systems using LMI (LMI 기법을 이용한 시변 불확정성 선형 시스템의 강인 극점 배치 설계)

  • Kim, Jae-Sung;Ma, Sam-Sun;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.491-493
    • /
    • 1999
  • In this paper, we consider the design of robust pole assignment for linear system. Considered uncertainty is time-varying uncertainty. Based on Lyapunov stability theorem and linear matrix inequality(LMI) we present the design result for pole assignment. Finally, we give some numerical examples to show the applicability and usefulness of our presented results.

  • PDF

Stability Condition for Discrete Interval Time-Varying System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연시간을 갖는 이산 시변 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.504-509
    • /
    • 2022
  • In this paper, we deal with the stability condition of linear time-varying interval discrete systems with time-varying delays and unstructured uncertainty. For the time-varying interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new result is derived by the form of simple inequality based on Lyapunov stability condition and has the advantage of being more effective in checking stability. Furthermore, the proposed condition is very comprehensive, powerful and inclusive the previously published conditions of various linear discrete systems, and can be expressed by the terms of magnitudes of the time-varying delay time and uncertainty, and bounds of interval matrices. The superiority of the new condition is shown in the derivation, and the usefulness and advantage of the proposed condition are examined through numerical example.

Delay-dependent Robust H Control of Uncertain Linear Systems with Time-varying Delays and Randomly Occurring Disturbances (시변지연과 임의 발생 외란을 고려한 불확실 선형 시스템에 대한 지연의존 강인 H 제어)

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.679-687
    • /
    • 2013
  • This paper proposes a new condition about delay-dependent robust $H_{\infty}$ control of uncertain linear systems with time-varying delay and randomly occurring disturbances. The norm bounded uncertainties are subjected to the system matrices. Based on Lyapunov stability theory, a sufficient condition for designing a controller gain such that the closed-loop systems are asymptotically stable with $H_{\infty}$ disturbance level ${\gamma}$ is formulated in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are included to show the effectiveness of the presented method.

Wavelet network approximation and coefficient learning of linear-time-varying system (시변 선형 시스템의 웨이브렛망 근사화와 가중치의 학습)

  • 이영석;김동옥;서보혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.728-731
    • /
    • 1997
  • This paper discusses approximation modelling of discrete-time linear time-varying system(LTVS). The wavelet transform is considered as a tool for representing and approximating a LTVS. The joint time-frequency properties of wave analysis are appropriate for describing the LTVS. Simulation results is included to illustrate the potential application of the technique.

  • PDF