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1 Introduction

In Part I, we derived robust stability conditions for an LTI inter-
connected to time-varying nonlinear perturbations belonging to
several classes of nonlinearities. These conditions were presented
in terms of positive definite solutions to LMI. In this paper we

address a problem of synthesizing feedback controllers for linear’

time-invariant systems under structured time-varying uncertain-
ties, combined with a worst-case My performance. This problem
is introduced in {7, 8, 15, 35] in case of time-invariant uncertain-
ties, where the necessary conditions involve highly coupled linear
and nonlinear matrix equations. Such coupled equations are in
general difficult to solve.

A convex optimization approach will be employed in this syn-
thesis problem in order to avoid solving highly coupled nonlinear
matrix equations that commonly arises in multiobjective syn-
thesis problem. Using LMI formulation, this convex optimiza-
tion problem can in turn be cast as generalized eigenvalue min-
imization problem, where an attractive algorithm based on the
method of centers has been recently introduced to find its solu-
tion [30, 36).

In the present paper we will restrict our discussion to state
feedback case with Popov multipliers. A more general case of
output feedback and other types of multipliers will be addressed
in a future paper.

2 Robust Control Synthesis With Worst-
Case Hy Performance

This section considers the synthesis of feedback control under
structured time-varying uncertainties, combined with a worst-
case Hy performance. We will employ robust stability conditions
for an LTI system coupled with time-varying nonlinearities, as
presented in Part [, but we specializes the results to linear time-
varying case. Since rabust stability conditions for linear-timne in-
variant nénlinearities can be deduced from those of time-varying
uncertainties, the synthesis tools presented in this paper could
be employed to handle time-invariant uncertainties as well.

Let G be dynamics of the plant with the following state space
representation,

2(t) = (A + AA)z(t) + Bu(t) + Dw(t)
y(t) = =(t)

(2.1)
(2.2)

where z(t) € £", u(t) € £+, and w(t) € R*v. AA is uncertainty
belonging to a prespecified uncertainty structure §. Assume that
for all uncertainty AA € S, the pair (A + AA, B) is stabilizable.
Let the transfer function of the plant G be denoted by G(s). The

state feedback controller is described by

u(t) = Kz(t) (2.3)
The objective of robust synthesis addressed in this paper is
twofold. First, we would like that our controller will render the
closed-loop system is asymptotically stable for all uncertainties
in the prespecified set S. Secondly, we would like that the same
controller will minimize a worst-case H, given by [7, 8, 15]

J:= sup limsup %{'[ w(z(l)'Q,z(t)+u(t)’Q,‘u(l))dt] (2.4)
DAES t—oo (1]

where @ and Q. are both positive definite. Assume that w(t)
is a white noise disturbance with 'unit intensity. For each uncer-
tainty AA € §, the closed-loop system can be written as

#(t) = (A + AA)E(1) + Dw(t) (2.5)

where
A=A+ BK, AA=AA (2.6)

It is well known that, provided (A4 AA) is asymptotically stable
for all AA € S for a given controller, the ?{, performance (2.4),
can also be written as

J = sup tr(PDD") =0 (2.7)
nAes
where
(A+ AP+ P(A+ DAY+ R=0 (2.8)

with I := Q: + K'Q.K.
In the case of Popov multiplier with m independent scalar
uncertainties, the uncertainty set S be specified as follows {7, 35]

S = {AA = -Bo'(1)Co, F € F} (2.9)
F:=(F(t)e D™ :0< F(t) < M}, (2.10)
where F = [F(t) € ®mxm F(t)y > o,

and the elements of F'(.) are Lebesgue measurable on [0,00)},
and where By € "™ and Cp € 1™ *" are fixed matrices denot-
ing the structure of uncertainty, M € R™*™ is a given positive
diagonal matrix, and F(t) € ®"*™ is time varying uncertain
matrix. D denotes matrix having diagonal entries, while M is
upper hounds on the uncertain diagonal matrix F(t). The cor-
responding Popov multipliers take the form

Wi(s) = aio + €Bio + fios (2.11)
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3 Optimization Problem: A Convexity

Result

In this section we formulate an optimization problem associated
with the synthesis problem described in Section 2, in terms of
solution to a Riccati equation. Then, using a change of vari-
able techniques, we formulate an equivalent optimization prob-
lem with nice convexity properties. Tu doing so, let us first deline

Ro(P) = [(IIeM™" 4 NoCoBa + NoQoM™")
+(HoM ™" 4 NoCollo + NoQoM ™'Y} > 0
(3.1)
R(P) = AP+ PA+ R+ [HoCo+ NoQoCo+ NoCoA
—ByP]' x R5'[HoCo + NoQoCo + NoCoA — B} P)
= 0 (3.2)
Jo = tr[(P + C5M NoCo)D D] (3.3)

with Vo — Ip > 0 and Vy := NoSo. Following [7, 8, 15], it can be
shown that the closed-loop system (2.5) is asymptotically stable
if there exists P > 0 that satisfies (3.2), and in this case
Ju 2 J (3.4)
Thus, J,, which is given in terms of a symmetric positive definite
solution to the Riccati equation {3.2), is an upperbound to the
worst-case performance J. This upperbound J, will be viewed
as a cotst to be minimized in our optimization problem defined
later.
Sufficient condition for the existence of solution to the Riccati
equation (3.2}, can be derived using the result of Willems[2, 3].
See also Theoremn 5.2 in [7, 15].

Lemma 3.1 (Willems[3, 3], How [7, 15]) Let G(s) be a transfer
function matriz with minimal realization given by

. Al B
o[ 442]
where
Iy = HoCo+ NoCod + NoQoCo
Iy = HeM™' 4 NoCoBo+ NoQoM ™

If A is asymptotically stable and C’(s) is strongly positive real,
then there exists P > 0 satisfying (3.2). Conversely, if Ro >0
and there exists P > 0 satisfying (3.2) for all R > 0, then A is
asymptotically stable and G(s) is strongly positive real.

The following lemina gives another characterization to the up-
perbound J,,, which prove useful in formulating a convex opti-
mization problem.

Lemma 3.2 Consider the system (2.1) and (2.2). Suppose that
the conditions stated in Lemma 2.2 hold. Then, ’

Jo(K) = inf{4r{(P + CLbMNoCo)DD'): P € P} (3.6)

where

P={(P:P>0,R(P)<0, and Hy— Vp <0} (3.7)

Proof: Follows from similar argument introduced in the prool of
Lemma 2.1 in [26] for mixed /. design, combined with some
results concerning dissipation inequality descrited in {2, 3].
a.
We call a controller K adsnissible if I internally stubilizes the
plant G. Introduce the following sets :

A(G) = {# : K is adiissible}
Aspr(G) := {K € A(G): G(s) is strongly positive real }3.8)

Motivated by {26], consider the following synthesis problem
Robust Control Synthesis Problem: "Compute the perfor-
mance measure

9",((]) S inf{.]u K e .Aspn(g)}, (3.9)

and, given any 6 > 8, find a controller K € Agpp(@) such that
R AN

In this paper we are interested in the computation of constant
state feedback matrices for the minimization of J,(G, k). The
set of such controllers will be denoted by

.ASPR,:(Q) ={K € Aspn(g) Il e %"“x"}. (3.10)

It will be shown that the optimal performance 8,,(G) defined in
(3.9) is the value of a (finite dimensional) convex optimization
problem. Further, given any # > #8,,, one can find K such that
Ju(G, K) < 8 by solving a convex programming problem.

Let Z; and Z; denote the set of 7 x n real symmetric matrices,
and the set of m x m diagonal matrices, respectively, and define

Q = {(X1Y1VO)IIO)€%""XHXEIXEQXEQZ

Y > 0,Vp > 0,Ho > 0} (3.11)

Observe that {2 is an open strictly convex subset of R7=X" x =, x
Z2 X E2. Given {(X,Y, Vo, Hy) € 0, define

J(X, Y, Vo, Ho) := tr{(Y ™1 4 CLM NoCo) D D') (3.12)

and, for (X, Y, Vo, Ho) € R™*™ x T3 x S, x Ty, let

Ry(X,Y, Vo, Hp) := AY + ¥ A" + Y'Q.Y
+X'Q. X+ X'+ BX
+[HoCoY + NoQuCoY + NoCoAY + NoCoBoX — By R5'
X[HoCoY + NoQoCoY 4 NoCoAY + NoCoBoX — B}
(3.13)

Define also the set of real matrices

(G) = {(X,Y,Vo,Ho) € Q: Ry(X,Y,Vo, Ho) <0

and Ho(X,Y, Vo, Hy) < 0}, (3.14)

with Ho(X,Y, Vo, o) := Iy ~ Vo and consider the optimization
problemn

7(6) 1= inf{f(X,Y, Vo, Ho) : (X, Y, Vo, o) € ®(G)}. (3.15)

Theorem 3.1 Consider the plant G defined in (2.1) and (2.2).
Let G denote its transfer matriz, and Agpp ,(G) denote the set of
controllers defined in (3.8). Let ®(G) be given by (8.14). Let 8,
and 7(G) he as defined in (3.9) and (3.15), respectively. Then,

Asrn (G) #0 (3.16)
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if, and only if,

8(0) # 9 (3.17)
with § denote empty set. In this case,
0m(G) = 7(9). (3.18)

Furthermore, given any 8 > 8,,(G), there exists (X,Y, Vg, Hp) €
®(G) such that the state feedback gain K := XY ! satisfies

K € Aspro(G) and J,(G,K) < f(X,Y, Ve, Ho) < 8. (3.19)

Proof: The proof can be constructed along the similar arguments
introduced in {26]. Unlike those of [26], however, we first convert
the Riccati inequality R(P) < 0 to its dual, by pre- and post-
multiplying it by P~!, to arrive at

P1A 4 AP-' 4 p'RP-!
HHoCoP~' + NoQoCoP~t + NoCoAP~' — BIJ' Ry
X[HoCoP™' + NoQoCoP ™' + NoCoAP~1 — Bj] < 0

Defining ¥ := P~! > 0, and substituting K = XY~! in to
the last equation leads to Ry (X,Y, Vo, Ho) < 0. The rest of the
proofs follows from [26] using characterization of the upperbound
Ju given in Lemma 3.2, together with existence result of the
solution to the Riccati (3.2) stated in Lemma 3.1.
o
From Theorem 4.1, it follows that the computation of 7(G)
involves a search over the set &(G), where XY ,Vj and Hg serve
as the decision variables. On the other hand 6,,(G) is computed
by solving nonlinear programming problem with only the real
matrix X as the decision variable. Furthermore, the set of fea-
sible static feedback gains, Aspr,(G) is not necessarily convex,
and therefore the original optimization problem for robust con-
troller synthesis is not necessarily convex. We will show that the
optimization problem ®(G) defined in (3.14) is indeed a convez
problem,

Theorem 3.2 Let f and ® be as defined in (3.12) and (3.14),
respectively, and consider the optimization problem (8.15). Then,
the set ® is convez and the function f : & — R 1s convez and real
analytic. Consequently, the optimization problent 7(G) defined in
(3.15) is convez.

Proof: The proof can be constructed along the same line as those
of [26], using matricial convexity results derived in [1], on noting
that here ®(G) is given in (3.14). s}

Due to the convexity established in this paper, one can employ
any advance in convex optimization problem with global opti-
mality properties. In this paper, the optimization problem 7(G)
in (3.15) will be further reduced to the Generalized Eigenvalue
Minimization Problem(GEMP) [30] where an effective algorithm
based on the method of centers has been introduced to find its
solution.

4 Reduction to GEMP Via LMI Formu-
lation

In this section, we will show that the optimization problem de-
fined in (3.6} can be reduced to Generalized Eigenvalue Mini-
mization Problem(GEMP) and describe a method of centers for
solving the problem[9]. GEMP is the problem of minimizing

the maximum generalized eigenvalue of a (symmetric positive-
definite) pair of matrices that depend afflinely on a variable z
that is subject to some constraints. In [9}, a fast and attractive
algorithm based on Interior Point Method has been applied to
solve efficiently GEMP.

In the gencral case, GEMP with variables z € #™ and A € ®
takes the form

min A (4.1)
AG(z) -~ F(z) >0
G(z)>0
H({z)>0
or equivalently,
min  Anac(F(z),G(z)). (4.2)
G(z)> 0
H(z)>0

where A, denotes the generalized maximum eigenvalue. This
is a function defined on a pair of matrices X,Y by Anao(X,Y) 1=
maz{\ € R|det(AY — X) = 0}. In (4.1) and (4.2}, F ,G and H
are symmetric matrices that depend affinely on z € ®™:

F(z) := F0+Zz,»1'",-
=1

G(z) = Go+ Y, =G (4.3)
i=1

H(z) = Ho+) =l

=1
where F; = F!, G; = G ¢ 877, and I; = H] € ®**. Matrices
F(z) and G(z) may be complex Hermitian.

Let us turn our attention to the optimization problem r(G)
defined in (3.15), which we rewrite here for convenience,

7(G) =

where f(X,Y,Vo,IIp) and ®(G) are given by (3.12) and (3.14),
respectively. The coeflicients of the multipliers will be restricted
to the case where Ho > 0,V5 > 0 and (Ho — V) < 0 without loss
of generality. Let us express the objective function (3.12) as:

inf{f(X,Y, Vo, Ho) : (X,Y, Vg, Io) € (G)}.

J(X,Y, Vo, o) = tr(D'Y 7'D + D'CyM NoCo D) (4.4)

The first term (X, Y, V5, Ho) := tr(D’Y 1 D) in the above equa-
tion can be equivalently expressed as

s D

O(X,Y, Vo, Ho) = min
{ D Y

ir(5).
]>0

Let us further define

Li(A\ X, Y, Vo, Ho, S) ~tr(D'CyM NoCoD — tr(S) + A

I _ Ly L
L:(X, X, Y, Vo, 1o, 5) := [ch [lzd}
) s D
La(M X, Y, Vo, o, S) = {f} ),]
LA X, Y, Vo, Ho,§) := Vo~ Ho
Ls(A X,Y, Vo, H10,8) = Vi
Lo(\ X, Y, Vo, Ho, §) o= o

L(A\ X,Y,Vo,H0,S) = diag{L1, Lz, L3, L4, Ly, Lg),
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where
L, = —(AY +YA' +X'B'+ BX)
Ly = [Y' X' Ty
Iy = (HoCoY + NoQoCoY + NoCoAY + NoCoBoX — By
L?c = I!b
Q' o 0
L = |0 Q' 0
0 0 Ry'

Note carefully that Li(A, X,Y, Vo, o, 5), L2(X, X, Y, Vo, o, S)
and L3(A\ X,Y,Vo,Ho,§) are afline matrix in the variables
(A, X, Y, Vo, Mo, S).

Using the above constructions and employing the Schur com-
plement formula which states that

Z| Z3
Zy Zp
our optimization problem 7(P) above can now be represented as

(4.5)

} >0e=2Z>0, and Zy — Z32;' 25 > 0,

min A
L(AX,Y,Vo [0, S)>0

which indeed is of the !'orl:n (4.1). Represented in the form of
(4.1), symmetric afline matrices F(x) and G(z) for optimization
problem (4.5) are given by

F(z) = ~diag([~tr(D'CoM NoCoD) — tr(5)),
Ly, L3, L4, Ls, Le)

G(z) = diag(1,0,0,0,0,0)

H(z) = Y.

Vector z in (4.1) then contains the optimization variables which
consist of the independent variables of (X, X,Y, Vg, /o, 5). Note
that matrices F(z), G(z) and F(z) are in the form of linear ma-
trix inequalities(LMI).

The GEMP (4.1) can be effectively solved using interior point
method. The method is based on the notion of analytic center
of an affine matrix inequality, say D(z) = Do + =N, 2:D; > 0.
Suppose that X denotes the feasible set

X = {z € ®V|D(z) > 0}.
The analytic center z* of the inequality D(z) > 0 is defined as
z* = argmin exlog detD(x)"".

Starting
with any feasible z(%, and a A® = A, (A(z(), B(z(?)), the
algorithin proceed as follows
= (1= MAnee(F(2, G(21)) 4 720
:= analytic center of AtVG(z) - F(z) > 0.

i+t
241}
In the above procedure 17 € (0,1) is a parameter which is typically
small. It enables one to take z() as an initial guess for the
Newton type method that finds the analytic center of inequality
Al +1)G(z) — F(z) > 0. Detailed analysis as well as the proof
of convergence can be found in [9).

In the present paper, the definiteness requirement of G(z) in
(4.1) is accomplished by simple modification{via the use of vari-
able A) of the above expression for G(x), as well as by a minor
modification to the algorithm of [9]. For related discussion as
well as numerical results for mixed H,/ /., design see [27, 28].

5 Conclusion

The problem of analyzing robustness of finite’dimensidnal linear
time-invariant systéms under nonlinear time-varying perturba-
tion has been presented via the use of dissipativity and absolute
stability theory. The robust stability conditions fot reveral class
of nonlinearities have been expressed conveniontly in terms of
solutions to LML These conditions can also be viewnd as an éx-
tension of mixed g upperbound to nonl'zear time varying pertur-
bations. Based on this result, a synthesis problem i» addressed
by incorporating the worst-case /I, performeuce cri. crion. It is
shown that this synthesis problem can be solved vi.. convex op-
timization problem and LMI formulation.

ACKNOWLEDGEMENTS: The first auvhor wishes to thank
DR. How of MIT for providing his Ph.D. thesis which stimulates
the discussion of the present paper and for his helpful comments.
Thanks are also due to Prof. Boyd of Stanford Univ for providing
many of his recent publications on LMI, to Prof. Khargonekar of
Michigan Univ. for early access to a preprint of [26] and to Prof.
Safonov of University of Southern California for providing refer-
ences (12, 13]. llelpful comments from Prof. Uchida of Waseda
Univ. are also appreciated.

References

(1} Marshall, A.W. and Olkin, I., Incqualities: Theory of Ma-
jorization and Its Application, Academic Press, New York,
1979.

{2] Willems, J.C., "Disspative Dynamical Systems Part 1 &
Part 2", Archieve Rational Mechanics Analysis, vol. 45, pp.
321-393, 1972,

[3} Trenteiman, H.L. and J.C. Willems, "The Dissipation In-
equality and the Algebraic Riccati Equation”, in The Ric-
cati Equation(Bittanti, Laub, Willems, eds.), pp. 197-242,
Springer-Verlag, New York, 1991.

{4} Hill, D.J. and P.J. Moylan,”The Stability of Nonlinear Dis-
sipative Systems”, IEEE T.A.C., vol. 21, pp. 708-T11, 1976.

[5] Willems, J.C., "Mechanisms for the Stability and Instability
in Feedback Systems”, Proc. IEEE, vol. 64, no. 1, pp. 24-35,
1976.

(6] Willem, J.L., "A General Stability Criterion for Nonlinear
Time Varying Feedback Systems”, L.J. Control, vol. 11, no.4,
pp. 625-631, 1970.

{7} How, J.P., "Robust Control Design with Real Parameter
Uncertainty Using Absolute Stability Theory”, Ph. D. The-
sis, MIT, 1993.

[8] How, J.P. and Hall, S.R., "Connection Between Absolute
Stability Theory and the Structured Singular Value”, sub-
mitted to IEEE T.A.C., May, 1992,

{9] How, J.P. and Hall, 5.R., ”Connection Between Popov Cri-
terion and Bounds for Real Parameter Uncertainty”, 1993
ACC, pp. 1084-1089, 1993.

{10] Doyle, J.C., " Analysis of Feedback Systems with Structured
Uncertainties”, IEE Proc., vol. 129, Part D, no. 6, pp. 242-
250, 1982

— 103 -



{L1] Packard, A. and Doyle, J., "The Complex Structured Sin-
gular Value”, Automatica, vo. 29, no. 1, pp.71-109, 1993.

[L2] Safonov, M.G. and P.H. Lee, ”A Multiplier Method for Com-
puting Real Multivariable Stability Margin”, preprint, 1993.

[13] Safonov, M.G. and R.Y. Chiang, "Real/Complex K-
Synthesis Without Curve Fitting”, preprint, 1993.

[14} Safonov, M.G., ”Stability of Interconnected Systems Having

Slope Bounded Nonlinearities”, 6th Int. Conf. on Analysis

and Optimization of Systems, Nice, 1984.

Haddad, W.M., J.P. How, S.R. Hall, and D.S. Bernstein,

"Extension of Mixed p Bounds to Monotonic and Odd

Monotonic Nonlinearities Using Absolute Stability Theory”,

Proc. 31st Conf. on Decision and Control, Tucson, pp. 2813-

2823, 1992.

Dahleh M. and J.C. Doyle, "QOverview of Robust Stabil-

ity and Performance Methods of Systems with Structured

Mixed Perturbations” Proc. 31st Conf. Decision and Con-

trol, Tucson, pp. 3158-3162, 1992,

Narendra, K.S. and J.II. Taylor, "Lyapunov Functions for

Nonlinear Time-Varying Systems”, Information and Con-

trol, vol. 12, pp. 378-393, 1968.

Taylor, J.H. and K.S. Narendra, "The Corduneau-Popov

Approach to The Stability of Nonlinear Time-Varying Sys-

tems”, SIAM J. Appl. Math., vol. 18, no. 2, pp. 267-281,

1970.

Srinath, M.D., M.A.L. Thathachar and H.K. Ramapriyan,

”Stability of a Class of Nonlinear Time Varying Systems”,

1.J. Control, vol. 7, pp. 117-132, 1968.

[20} Thathachar, M.A.L. and M.D. Srinath, "Au Improved Sta-
bility Criterion for a Systems With Non-monotone Nonlin-
earity”, 1.J. Control, vol. 12, no.1, pp. 145-155, 1970.

[21] Thathachar, M.A.L., M.D. Srinath and H.K. Ramapriyan,
"On a Modified Lur'e Problem”, IEEE T.A.C., vol. 12, pp.
731-739, 1967.

[22] Srinath, M.D., "Passivity of a Class of Non-monotone Non-

" linearities”, 1.J. Control, vol. 16, no.5, pp.-889-896, 1972.

(15]

{16]

(17]

(18]

[19]

[23] Desoer, C.A. and M. Vidyasagar, Feedback Systems: Input-
Qutput Properties, Academic Press, New York, 1975.

[24] Popov, V.M., Hiperstability of Control Systems, Springer,
New York, 1973.

[25] Narendra, K.S., Frequency Domain Criteria for Absolute
Stability, Academic Press, New York, 1973.

[26] Khargonekar, P.P. and Rotea, M.A., "Mixed Hy/H, Con-
trol : A Convex Optimization Approach”™, IEEE T.A.C., vol.
36, no. 7, pp. 824-836, 1991.

[27] Bambang, R., Shimemura, E. and Uchida, K., "Mixed
Hy/Ho, Control of Uncertain Systems”, Proc. 1993 ACC,
1993. .

(28] Bambang, R., Shimemura, E. and Uchida, K., "Mixed
Ha/Hy, Control With Pole Placement : State Feedback
Case”, Proc. 1993 ACC, 1993.

[29] Doyle, J.C., Packard, A., and Zhou, K., "Review of LFTs,
LMIs, and u”, draft, 1991,

[30] Boyd, S., and El Ghaoui, L., "Method of Centers For Mini-
mizing Generalized Eigenvalues”, preprint, 1992.

[31] Balakrishnan, V., Feron, E., Boyd, S. and El Ghaoui, L.
»Computing Bounds for The Structured Singular Value via
Interior Point Algorithm”, Proc. ACC., 1992.

Fan, M.K.1I., Tits, A.L., and Doyle, J.C., "Robustness in

the Presence of Mixed Parametric Uncertainty and Unmod-

eled Dynamics”, IEEE T.A.C., vol. 36, no. 1, pp. 25-38,

1991.

Zames, G., "On the Input-Output Stability of Time Vary-

ing Noulinear Feedback Systems Part I & Part II”, IEEE

T.A.C., vol. 11, no. 2, pp. 228-238 and no. 3, pp. 465-476,

1966.

Shamma, J.S., "Robustness Analysis for Tiine Varying Sys-

tems”, Proc. 31st Conf. Decision and Control, Tucson, pp.

3163-3168, 1992.

Haddad, W.M. and Bernstein, D.S., "Parameter-Dependent

Lyapunov Functions, Constant Real Parameter Uncertainty,

and the Popov Criterion in Robust Analysis and Synthesis,

Parts 1 and 1I”, Proc. 30th IEEE Conf. Decision and Con-

trol, 1991.

Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V.,

"Linear Matrix Inequalities in Systems and Control The-

ory”, draft, 1993.

[37] Gahinet, . and Apkarian, P., A Linear Matrix Inequality
Approach to H,, Control”, to appear in Int. J. Robust and
Nonlinear Control, 1993.

[38] Rantzer, A., "Uncertainties With Bounded Rate of Varia-
tion”, Proc. 1993 ACC, pp. 29-30, 1993.

(32
(33]
[34]

(35)

{36]

- 104 —



