• 제목/요약/키워드: time-series modeling

Search Result 454, Processing Time 0.036 seconds

A New Algorithm for Automated Modeling of Seasonal Time Series Using Box-Jenkins Techniques

  • Song, Qiang;Esogbue, Augustine O.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.9-22
    • /
    • 2008
  • As an extension of a previous work by the authors (Song and Esogbue, 2006), a new algorithm for automated modeling of nonstationary seasonal time series is presented in this paper. Issues relative to the methodology for building automatically seasonal time series models and periodic time series models are addressed. This is achieved by inspecting the trend, estimating the seasonality, determining the orders of the model, and estimating the parameters. As in our previous work, the major instruments used in the model identification process are correlograms of the modeling errors while the least square method is used for parameter estimation. We provide numerical illustrations of the performance of the new algorithms with respect to building both seasonal time series and periodic time series models. Additionally, we consider forecasting and exercise the models on some sample time series problems found in the literature as well as real life problems drawn from the retail industry. In each instance, the models are built automatically avoiding the necessity of any human intervention.

Issues Related to the Use of Time Series in Model Building and Analysis: Review Article

  • Wei, William W.S.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.209-222
    • /
    • 2015
  • Time series are used in many studies for model building and analysis. We must be very careful to understand the kind of time series data used in the analysis. In this review article, we will begin with some issues related to the use of aggregate and systematic sampling time series. Since several time series are often used in a study of the relationship of variables, we will also consider vector time series modeling and analysis. Although the basic procedures of model building between univariate time series and vector time series are the same, there are some important phenomena which are unique to vector time series. Therefore, we will also discuss some issues related to vector time models. Understanding these issues is important when we use time series data in modeling and analysis, regardless of whether it is a univariate or multivariate time series.

Fused Fuzzy Logic System for Corrupted Time Series Data Analysis (훼손된 시계열 데이터 분석을 위한 퍼지 시스템 융합 연구)

  • Kim, Dong Won
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • This paper is concerned with the modeling and identification of time series data corrupted by noise. As modeling techniques, nonsingleton fuzzy logic system (NFLS) is employed for the modeling of corrupted time series. Main characteristic of the NFLS is a fuzzy system whose inputs are modeled as fuzzy number. So the NFLS is especially useful in cases where the available training data or the input data to the fuzzy logic system are corrupted by noise. Simulation results of the Mackey-Glass time series data will be demonstrated to show the performance of the modeling methods. As a result, NFLS does a much better job of modeling noisy time series data than does a traditional Mamdani FLS.

Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory (시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합)

  • Lee, Geum-Yong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.277-286
    • /
    • 2002
  • Genetic programming (GP) has been combined with quantum mechanical perturbation theory to make a new algorithm to construct mathematical models and perform predictions for chaotic time series from real world. Procedural similarities between time series modeling and perturbation theory to solve quantum mechanical wave equations are discussed, and the exemplary GP approach for implementing them is proposed. The approach is based on multiple populations and uses orthogonal functions for GP function set. GP is applied to original time series to get the first mathematical model. Numerical values of the model are subtracted from the original time series data to form a residual time series which is again subject to GP modeling procedure. The process is repeated until predetermined terminating conditions are met. The algorithm has been successfully applied to construct highly effective mathematical models for many real world chaotic time series. Comparisons with other methodologies and topics for further study are also introduced.

Fuzzy Logic-based Modeling of a Score (퍼지 이론을 이용한 악보의 모델링)

  • 손세호;권순학
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • In this paper, we interpret a score as a time series and deal with the fuzzy logic-based modeling of it. The musical notes in a score represent a lot of information about the length of a sound and pitches, etc. In this paper, using melodies, tones and pitches in a score, we transform data on a score into a time series. Once more, we form the new time series by sliding a window through the time series. For analyzing the time series data, we make use of the Box-Jenkinss time series analysis. On the basis of the identified characteristics of time series, we construct the fuzz model.

  • PDF

Fuzzy Logic-based Modeling of a Score (퍼지 이론을 이용한 악보의 모델링)

  • 손세호;권순학
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.264-269
    • /
    • 2001
  • In this paper, we interpret a score as a time series and deal with the fuzzy logic-based modeling of it. The musical notes in a score represent a lot of information about the length of a sound and pitches, etc. In this paper, using melodies, tones and pitches in a score, we transform data on a score into a time series. Once more, we foml the new Lime series by sliding a window through the time series. For analyzing the time series data, we make use of the Box-Jenkins s time series analysis. On the basis of the identified characteristics of time series, we construct the fuzzy model.

  • PDF

Decomposition Analysis of Time Series Using Neural Networks (신경망을 이용한 시계열의 분해분석)

  • Jhee, Won-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.111-124
    • /
    • 1999
  • This evapaper is toluate the forecasting performance of three neural network(NN) approaches against ARIMA model using the famous time series analysis competition data. The first NN approach is to analyze the second Makridakis (M2) Competition Data using Multilayer Perceptron (MLP) that has been the most popular NN model in time series analysis. Since it is recently known that MLP suffers from bias/variance dilemma, two approaches are suggested in this study. The second approach adopts Cascade Correlation Network (CCN) that was suggested by Fahlman & Lebiere as an alternative to MLP. In the third approach, a time series is separated into two series using Noise Filtering Network (NFN) that utilizes autoassociative memory function of neural network. The forecasts in the decomposition analysis are the sum of two prediction values obtained from modeling each decomposed series, respectively. Among the three NN approaches, Decomposition Analysis shows the best forecasting performance on the M2 Competition Data, and is expected to be a promising tool in analyzing socio-economic time series data because it reduces the effect of noise or outliers that is an impediment to modeling the time series generating process.

  • PDF

Enhanced reasoning with multilevel flow modeling based on time-to-detect and time-to-effect concepts

  • Kim, Seung Geun;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.553-561
    • /
    • 2018
  • To easily understand and systematically express the behaviors of the industrial systems, various system modeling techniques have been developed. Particularly, the importance of system modeling has been greatly emphasized in recent years since modern industrial systems have become larger and more complex. Multilevel flow modeling (MFM) is one of the qualitative modeling techniques, applied for the representation and reasoning of target system characteristics and phenomena. MFM can be applied to industrial systems without additional domain-specific assumptions or detailed knowledge, and qualitative reasoning regarding event causes and consequences can be conducted with high speed and fidelity. However, current MFM techniques have a limitation, i.e., the dynamic features of a target system are not considered because time-related concepts are not involved. The applicability of MFM has been restricted since time-related information is essential for the modeling of dynamic systems. Specifically, the results from the reasoning processes include relatively less information because they did not utilize time-related data. In this article, the concepts of time-to-detect and time-to-effect were adopted from the system failure model to incorporate time-related issues into MFM, and a methodology for enhancing MFM-based reasoning with time-series data was suggested.

Algorithms for bivariate time series modeling in small size computers (2변수 시계열 모델 산출을 위한 소형컴퓨터용 알고리즘)

  • 김광준;문인혁;박병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.108-112
    • /
    • 1986
  • Several algorithms for bivariate time series modeling are reviewed : linear least square, nonlinear least squares, generalized least square, and multi-stage least square methods. Estimation results of simulated data by the above methods are discussed.

  • PDF

Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model (시간지체 순환신경망모형을 이용한 수문학적 모형화기법)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF