References
- M. Lind, An introduction to multilevel flow modeling, Nucl. Saf. Simulat. 2 (1) (2011) 1-11.
- M. Lind, H. Yoshikawa, S.B. Jorgensen, M. Yang, K. Tamayama, K. Okusa, et al., Multilevel flow modeling of Monju nuclear power plant, Nucl. Saf. Simulat. 2 (3) (2011) 274-284.
- B. Ohman, Failure mode analysis using multilevel flow models, in: 1999 European Control Conference, Karlsruhe, Germany, 31 Aug.-3 Sept., 1999.
- J. Wu, L. Zhang, W. Liang, J. Hu, et al., A novel failure mode analysis model for gathering system based on multilevel flow modeling and HAZOP, Process Safe. Environ. Protect. 91 (1-2) (2013) 54-60. https://doi.org/10.1016/j.psep.2012.02.002
- J. Ouyang, M. Yang, H. Yoshikawa, Z. Yangping, et al., Modeling of PWR plant by multilevel flow model and its application in fault diagnosis, J. Nucl. Sci. Technol. 42 (8) (2005) 695-705. https://doi.org/10.1080/18811248.2004.9726439
- A. Gofuku, Y. Tanaka, Application of a derivation technique of possible counter actions to an oil refinery plant, in: Proceedings of 4th IJCAI Workshop on Engineering Problems for Qualitative Reasoning, 1999, pp. 77-83.
- A. Gofuku, T. Inoue, T. Sugihara, et al., A technique to generate plausible counter-operation procedures for an emergency situation based on a model expressing functions of components, J. Nucl. Sci. Technol. 54 (5) (2017) 578-588. https://doi.org/10.1080/00223131.2017.1292966
- W. Qin, P.H. Seong, A validation method for emergency operating procedures of nuclear power plants based on dynamic multi-level flow modeling, Nucl. Eng. Technol. 37 (1) (2005) 118-126.
- M.M. Rene van Paassen, P.A. Wieringa, Reasoning with multilevel flow models, Reliab. Eng. Syst. Saf. 64 (1999) 151-165. https://doi.org/10.1016/S0951-8320(98)00060-X
- A. Gofuku, Y. Kondo, Quantitative effect indication of a counter action in an abnormal plant situation, Int. J. Nucl. Saf. Simulat. 2 (3) (2011) 255-264.
- A. Gofuku, Applications of MFM to intelligent systems for supporting plant operators and designers: function-based inference techniques, Int. J. Nucl. Saf. Simulat. 2 (3) (2011) 235-245.
- T. Kurtoglu, S.B. Johnson, E. Barszcz, J.R. Johnson, P.I. Robinson, et al., Integrating system health management into the early design of aerospace systems using functional fault analysis, in: 2008 International Conference on Prognostics and Health Management, Denver, CO, Oct. 6-9, 2008.
- J. Diebolt, C.P. Robert, Estimation of finite mixture distributions through Bayesian sampling, J. Roy. Stat. Soc. Ser. B (Methodological) (1994) 363-375.
- B.J. Stojkova, Bayesian Methods for Multi-modal Posterior Topologies, Ph.D. Dissertation, Department of Statistics and Actuarial Science, Simon Fraser University, 2017.
- N.E. Day, Estimating the components of a mixture of normal distributions, Biometrika 56 (1969) 463-474. https://doi.org/10.1093/biomet/56.3.463
- B.W. Silverman, Using kernel density estimates to investigate multimodality, J. Roy. Stat. Soc. Ser. B (Methodological) (1981) 97-99.
- J.E. Chacon, T. Duong, et al., Data-driven density derivative estimation with applications to nonparametric clustering and bump hunting, Electron. J. Stat. 7 (2013) 499-532. https://doi.org/10.1214/13-EJS781
- S. Mukhopadhyay, Large-scale mode identification and data-driven sciences, Electron. J. Stat. 11 (1) (2017) 215-240. https://doi.org/10.1214/17-EJS1229
- J.E. Kelley Jr., M.R. Walker, Critical-path planning and scheduling, in: 1959 Proceedings of the Eastern Joint Computer Conference, 1959, pp. 160-173.
Cited by
- Generation of Signed Directed Graphs Using Functional Models vol.52, pp.11, 2018, https://doi.org/10.1016/j.ifacol.2019.09.115
- System-Level Fault Prognosis for High-Speed Railway On-Board Systems vol.2673, pp.12, 2019, https://doi.org/10.1177/0361198119867673