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Abstract. As an extension of a previous work by the authors (Song and Esogbue, 2006), a new algorithm for 
automated modeling of nonstationary seasonal time series is presented in this paper. Issues relative to the meth-
odology for building automatically seasonal time series models and periodic time series models are addressed. 
This is achieved by inspecting the trend, estimating the seasonality, determining the orders of the model, and 
estimating the parameters. As in our previous work, the major instruments used in the model identification 
process are correlograms of the modeling errors while the least square method is used for parameter estimation. 
We provide numerical illustrations of the performance of the new algorithms with respect to building both sea-
sonal time series and periodic time series models. Additionally, we consider forecasting and exercise the mod-
els on some sample time series problems found in the literature as well as real life problems drawn from the re-
tail industry. In each instance, the models are built automatically avoiding the necessity of any human interven-
tion. 
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1.  INTRODUCTION 

This paper presents new algorithms for automatic 
building of seasonal and periodical models for seasonal 
time series using Box-Jenkins modeling techniques.  

As is known, the major vehicles employed in Box-
Jenkins time series modeling technique are the correlo-
grams of the data which provide useful structural infor-
mation of a time series. Despite its conceptual clarity 
and simplicity, this technique imposes a heavy burden 
on modelers who must visually inspect the correlogram 
plots and hypothesize on the orders and the types of the 
models for the time series of interest. Once a tentative 
model structure is determined with the visual inspection 
of the correlograms, parameters of the model are then 
estimated. Whether or not the identified model is proper 

is determined by the modeling error characteristics. In 
general, if the modeling errors behave strongly like a 
white noise process, then the model is considered to be 
proper. Otherwise, different model structures must be 
explored. Evidently, this modeling technique poses 
some difficulties in applications, and could be even 
harder to automate. For this reason, Box-Jenkins model-
ing technique has not enjoyed wide applications that it 
deserves (Talluri and van Ryzin, 2004; Liu, 2006, p. 4.1). 
In an automated modeling process, the major difficulty 
with Box-Jenkins modeling technique is the visual in-
spection of the correlograms. Unless an algorithm is 
developed to inspect the correlograms automatically by 
a computer system instead of by human beings, it is 
almost impossible to automate the modeling process 
satisfactorily and economically in line with the Box-
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Jenkins technique. Although a number of different aut- 
omated modeling algorithms have been reported in the 
literature (Reilly, 1980, 1987; Wu and Pandit, 1979), they 
have been shown to possess certain deficiencies as dis-
cussed for example in (Song and Esogbue, 2006). Most 
recently, Song and Esogbue (2006) have developed an 
algorithm to automate the modeling process of station-
ary ARMA time series using Box-Jenkins modeling 
techniques. It is believed that this newly developed algo-
rithm rectifies, to a large extent, the key issues and con-
cerns with existing algorithms while avoiding their ma-
jor drawbacks. For notational convenience, we tenta-
tively name this newly reported algorithm, the S-E algo-
rithm. 

A natural extension of the S-E algorithm is the au-
tomation of the modeling process of seasonal time series. 
In general, seasonal time series are classified as station-
ary and nonstationary seasonal time series. In this paper, 
we only consider a special class of nonstationary seaso-
nal time series which may contain a deterministic local 
trend but have a constant variance. We focus our atten-
tion on the modeling of such seasonal time series. Speci-
fically, we develop automated modeling algorithms for 
such seasonal time series via an extension of the S-E al-
gorithm. 

This paper is organized as follows. In Section 2, the 
literature of seasonal time series modeling algorithms is 
first reviewed followed by a brief review of the S-E al-
gorithm in Section 3. The major result of this paper is 
presented in Section 4 where the algorithms for seasonal 
time series modeling are discussed in detail. Extensions 
of the main results to periodic time series modeling are 
presented in Section 5. Numerical illustrations which 
provide and compare modeling and forecasting results 
using different data sets found in the literature and in the 
retail industry are provided in Section 6. Conclusions 
and discussions are given in Section 7. 

2.  LITERATURE REVIEW 

The primary instruments employed in Box-Jenkins 
time series modeling techniques are the correlograms of 
the observation data. It has been found that correlograms 
of different types of theoretical time series possess strik-
ingly different characteristics. For example, a pure mov-
ing average (MA) time series of order q has an autocorre-
lation function plot which has a cut-off after q lags. A 
pure autoregressive (AR) time series of order p has a par-
tial autocorrelation function plot which has a cut-off after 
p lags. These two features help a great deal in identifying 
models for real life time series if the corresponding corre-
logram has nearly zero values after a finite number of lags. 
A pure theoretical autoregressive-moving average (ARMA) 
time series, on the other hand, has a correlogram which 
lacks such salient characteristics that are easy to recog-
nize visually. This observation creates significant difficul-
ties in identifying ARMA models in practice and is one of 

the incentives for exploring new solutions. 
The literature basically contains two types of models 

for a seasonal time series. One is the seasonal time series 
model, and the other periodic time series model. In appli-
cations of seasonal time series models, a model is used 
for all different seasons. That is to say, the model parame-
ters are the same for all seasons in a seasonal time series 
while in the applications of periodic time series models an 
individual model is used for only one season. Superfi-
cially, the seasonal time series model employs fewer pa-
rameters than the periodic model and may not fit the data 
as well as the latter for all different seasons. Building a 
periodic time series model, on the other hand, could be 
much more difficult than building a seasonal time series 
model. These two types of models differ also in the auto-
correlation structures (McLeod, 1992, 1994). 

In the literature, there exist basically two strategies 
in identifying seasonal time series models and periodic 
time series models. One strategy is to utilize correlograms 
of the data, and the other is to employ information criteria 
such as AIC (Akaike Information Criterion) (Akaike, 1974), 
or BIC (Bayes Information Criterion) (Schwarz, 1978). With 
the first strategy, one tries to find cut-offs after a finite 
number of lags in the correlograms of the properly trans-
formed data (Sakai, 1982). However, as it is unknown in 
advance how the data should be transformed and what 
structure the model may attain, this is a complicated trial-
and-error process in seasonal time series model identifica-
tion given the available literature (Box, Jenkins and Rein-
sel, 1994; Brockwell and Davis, 1996; Liu, 2006). To id- 
entify a periodic autoregressive time series model, for 
example, one may plot the partial autocorrelation function 
for each season, and try to find cut-offs after a finite 
number of lags (McLeod, 1992, 1994; Hurd and Gerr, 
1991; Ula and Smadi, 2003; Wang et al., 2005). To a large 
extent, this is still within the framework of the Box-
Jenkins modeling technique. It appears that no satisfac-
tory methods are available for building periodic autore-
gressive-moving average models (McLeod, 1994). With 
the information criterion strategy, one has to maintain a 
list of candidate models, either explicitly or implicitly, 
and enumerate the model list to minimize the chosen in-
formation criterion where each model should have a dif-
ferent combination of numbers of model parameters (Fra- 
nses and Paap, 2004; Franses and Koehler, 1998; Franses 
and Paap, 1994; McLeod, 1992, 1994; Brockwell and 
Davis, 1996). With this strategy, once a model candidate 
is chosen, the model parameters must be estimated and 
the corresponding information criterion is calculated (Box, 
Jenkins and Reinsel, 1994; Adams and Goodwin, 1995). 
While this strategy imposes no difficulty for building 
seasonal time series models, it may become quite prob-
lematic when building periodic time series models as there 
might be too many different model candidates to consider 
(McLeod, 1992, 1994). In addition, the models identified 
with information criterion could be less parsimonious 
than those selected with the first strategy (McLeod, 1992). 
In addition to these two strategies in modeling seasonal 



 A New Algorithm for Automated Modeling of Seasonal Time Series Using Box-Jenkins Techniques 11 

 

time series, power spectra of time series are also used to 
identify models of seasonal time series (Box, Jenkins and 
Reinsel, 1994; Brockwell and Davis, 1996), and fast Fou-
rier transformation can be used to model a seasonal time 
series (Tefsaye, Meershaert and Anderson, 2006). These 
are however, beyond the scope of this paper, and therefore 
will not be pursued here. 

It should be pointed out that these aforementioned 
methods are not designed per se for automated modeling 
processes, albeit with proper modifications these methods 
could be automated. Therefore, it is highly desirable to 
have automated model building algorithms for seasonal 
and even periodic time series models. 

From the application point of view, for an automated 
seasonal time series modeling algorithm, there exist at 
least four issues that must be resolved automatically. The 
first one is the trend detection. If there is a significant 
trend in the data, the algorithm should be able to detect it 
and de-trend the data by differencing the data properly 
(Franses and Taylor, 2000). The second is to detect and 
estimate the seasonality existing in the given time series 
as the periodicity estimation is crucial for modeling a 
seasonal time series. The next is to select a proper order 
of the model from a given family of models, and this 
must be done automatically as well. And the last one is to 
estimate the parameters of the model identified (Åström 
and Wittenmark, 1995; Box, Jenkins and Reinsel, 1994). 
To solve the first problem, a linear regression model can 
be set up using the data set, and if the slope of the regres-
sion line is significant, then there could be a trend in the 
data set. A more powerful tool is the Dickey-Fuller’s al-
gorithm (Dickey and Fuller, 1979) which tests if there is a 
unit-root in the model so as to determine if differencing is 
necessary. In this paper however, we adopt the first ap-
proach to detect possible trends in a time series while 
leaving the possibility of exploring the other approaches 
in the future. To detect the seasonality, a heuristic algo-
rithm that is implicitly employed in Box, Jenkins and 
Reinsel (1994, p.342) can be applied. This algorithm util-
izes the autocorrelation of the differenced time series, and 
seeks the lag of the maximal autocorrelation value. The 
corresponding lag is regarded as the period of the time 
series. To identify a proper model, the S-E algorithm can 
be used where the least square method or the maximum 
likelihood method shall be used to estimate the model 
parameters. 

3.  BRIEF REVIEW OF THE S-E  
ALGORITHM 

In this section, we briefly review the S-E algorithm 
in order to appreciate how this algorithm can be used in 
modeling seasonal time series. The S-E algorithm consists 
of two sub-algorithms, Algorithm 1 and the Main Algo-
rithm. Algorithm 1 is used to read the autocorrelation 
function or the partial autocorrelation function plots, a 
fundamental step in automated modeling process, while 

the Main Algorithm is the main body of model identifica-
tion and estimation of which Algorithm 1 is a sub-routine. 

To proceed, let us assume that }{ tx  is a stationary 
time series. Then, }{ tx  can be modeled in general by the 
following difference equation (Box, Jenkins and Reinsel, 
1994): 
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where }{ tξ  is an i.i.d. noise process, p and q are the or- 
ders of the model. Such a model is called autoregressive- 
moving average(ARMA) model and denoted as ARMA 
(p, q), and the process is called an ARMA time series. To 
motivate our algorithm, let us rewrite ARMA(p, q) model 
(1) in a different form as follows: 
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where  
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and }{ tγ can be regarded as an MA(q) time series. Obvi-
ously, (1) is equivalent to (2) and (3). That is, we purpose-
fully decompose an ARMA(p, q) time series into two 
parts: one is an autoregressive process and the other a 
moving average process. }{ tγ can be seen as the model 
error in (2). Note that it is not required here that }{ tγ be 
uncorrelated, as implied by (3). Instead, }{ tγ could be 
serially correlated and it is the dependence of }{ tγ that 
we can draw information about q from based on a chosen 
value of p.  

The S-E algorithm can be reviewed as follows. Sup-
pose that both (2) and (3) are time series. We pick a value 
for p of the autoregressive part. Applying an estimation 
algorithm with the data, we obtain a set of model parame-
ters of paaa ,,, 21 ⋅⋅⋅ . Then, from this AR(p) model we 
obtain a model residual time series }.{ tγ  If this time 
series is a white noise, then its autocorrelation function 
has a value of virtually zero for any non-zero lags, and 
this characteristic is very easy to recognize. In this case, 
we have identified p correctly and we know that the 
model is an AR(p). If }{ tγ is correlated, and if its auto-
correlation function has a cutoff after q lags, then }{ tγ is 
an MA(q) time series and we need to add an MA(q) part 
to the model. Otherwise, if its autocorrelation function 
has tail-off, it means that }{ tγ is either an autoregressive 
or a mixed time series. In either case, it suggests that in (2) 
the p value was not chosen properly. If so, we simply 
increase p by 1, and repeat the above process.  

To determine the q value, we utilize a statistical hy-
pothesis test. As is known, the autocorrelation function 
values of a white noise are zeros for all non-zero lags. For 
the estimated autocorrelation function of a white noise, 
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the autocorrelation coefficients can be regarded as a ran-
dom variable whose variance can be approximated with 
the following formula (Box, Jenkins and Reinsel, 1994), 
albeit better approximation algorithms exist, 

 

 
N
1

=σ     (4) 

 
where N is the sample size of the data used to calculate 
the autocorrelation function. Thus, for a given signifi-
cance level α , if the percentage of autocorrelation coef-
ficients of nonzero lags that are outside the confidence 
interval ( ,σk− σk ) is less than 1-α  where k is chosen 
properly, then there is a good reason to believe that the 
residual process is a white noise. Otherwise, we need to 
test further whether the residuals are a moving average or 
an autoregressive time series. The following paragraph 
describes Algorithm 1 concisely. 
 
Algorithm 1 

Step 1. Determine a significance level ,α  a posi-
tive k, and estimate σ  using (4). Set l = 0. 

 
Step 2. If lρ  is outside the confidence interval ( ,σk−  

σk ), set l = l +1, and repeat Step 2. Else, go 
to Step 3. 

 
Step 3. Calculate the percentage φ  of the autocor-

relation coefficients that are outside of the 
confidence interval ( ,σk− σk ) from lag l to 
the maximum lag. If φ  is less than or equal 
to 1- ,α  then let q = l and stop. Else, q is 
undetermined and stop. 

 
Once the order of the model has been identified, we 

need to estimate the parameters in the model. After that, 
the probability structure of the model errors will be 
checked, and if needed the above algorithm will be exe-
cuted again with a different order values.  

We note that the approximation formula of (4) has 
some limitations. It is solely dependent on the number of 
data N. When N is sufficiently large, the estimated stan-
dard deviation of the correlation coefficients tends to be 
zero, and thus it is very likely to reject the null hypothesis 
that the model error is a white noise even though it is very 
close to it. For this reason, it is recommended to use the 
following formula instead to estimate the standard devia-
tion of the correlation coefficients (Box, Jenkins and Re-
insel, 1994), 

 ⎟⎟
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where k > q, ir  is the estimated autocorrelation coeffi-
cient, and i = 1, 2, ⋯, q. Next, we will review the major 

part of the S-E algorithm, which consists of three steps, to 
model stationary time series. 
 
Main Algorithm: 

Step 1. Use Algorithm 1 to test if the time series is 
AR or MA. If neither, let p = 0, and go to 
Step 2. 

Step 2. Let p = p +1. Estimate the parameters of 
AR(p), and calculate model residuals. Use 
Algorithm 1 to test if the residuals are an 
MA time series. If yes, then go to Step 3 
with q identified. Else, repeat Step 2. 

Step 3. Estimate parameters for the tentative model 
ARMA(p, q), and calculate model residuals. 
Then, use Algorithm 1 to test if the residuals 
are a white noise process. If yes, stop. Else, 
go to Step 2. 

 
The above algorithm has been applied to model a 

number of time series found in the literature and the re-
sults are very satisfactory. All models are built automati-
cally without human interventions (Song and Esogbue, 
2006).  

We observe that using model residuals to help in 
model identification is not a new idea. In the literature, a 
different algorithm, called the extended autocorrelation 
function method developed by Tsay and Tiao (Liu, 2006) 
also uses the autocorrelation function of the residuals in 
helping model identification. However, to apply this algo-
rithm one must construct a correlation matrix and identify 
a special structure formed by the zero elements of the 
matrix to help identify the orders of an ARMA model. 
This is not an easy process. For one, this algorithm re-
quires many more calculations than does the S-E algo-
rithm. For another, it has limited utilities in seasonal time 
series modeling (Liu, 2006, p. 3.13).  

In the next section, we discuss how to build a sea-
sonal time series model automatically by applying the S-
E algorithm. 

4. MAIN RESULTS 

Suppose }{ tx  is a nonstationary seasonal time se-
ries with seasonality S. In addition, it is assumed that 

}{ tx  has a deterministic local trend. Let B−=∇ 1  be 
the differencing operator, and B the backshift operator. As 
differencing can remove trend in the time series, we may 
assume that a properly chosen positive integer d can be 
found so that the time series after d times of successive 
differencing becomes a stationary one, i.e., }{ td x∇  is a 
stationary seasonal time series. Consequently, the station-
ary seasonal time series }{ td x∇  can be described by the 
following ARMA model 

 
ttd aBxB SS )()( Θ=∇Φ    (5) 

where )( SBΦ  and )( SBΘ  are polynomials of ,SB  of 
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proper orders. Evidently, if both )( SBΦ  and )( SBΘ  are 
properly determined, then all the seasonal components in 
the time series }{ td x∇  are modeled, and the residual 
process }{ ta  may be a stationary ARMA process. There-
fore, both of these polynomials can be identified auto-
matically by the S-E algorithm, as to be discussed later. 
Model (5) describes how data S lags apart are related to 
one another. However, it provides no information about 
how successive observations in the original time series 

}{ tx  are related. If tx  is also correlated with the most 
recent data in the past such as ,, 21 −− tt xx ⋯, then this may 
be reflected in the model residuals of (5) so that }{ ta  is a 
serially correlated series. And hence }{ ta  can be mod-
eled by the following difference equation, 
 

 tt BaB εθφ )()( =    (6) 

 
where }{ tε  is a white noise process. Substituting (6) 
into (5) will yield  
 

tStdS BBxBB εθφ )()()()( Θ=∇Φ    (7) 
 

where the polynomials ),(Bφ ),( SBΦ )(Bθ and )( SBΘ  
are identical with the counterparts in (5) and (6). Our goal 
is to identify and estimate these four polynomials and 
determine the value of S and d in (7) automatically. One 
strategy might be to identify and estimate )( SBΦ  and 

)( SBΘ  in (5) first. If the residual }{ ta  is an MA or an AR 
process, then )( SBΦ  and )( SBΘ could be determined 
easily. However, if }{ ta  is an ARMA process, then the 
automatic model building process could become very 
complicated because in this case the identification of 

)( SBΦ  and )( SBΘ will be interwoven with that of }{ ta . 
Therefore, we will consider different strategies so that the 
automatic model building process could be as simple as 
possible in all cases. One different strategy is to identify 
the product of )(Bφ and ),( SBΦ  and the product of 

)(Bθ and )( SBΘ simultaneously. This may require im-
posing some constraints on the structures of all these 
polynomials. Nonetheless, this could make the model 
building process simpler. 

Next, let us consider the general forms of )()( SBB Φφ  
and )()( SBB Θθ which have both seasonal and non-
seasonal terms as follows, 
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Then, we have the following difference equation as the 
model of the stationary seasonal time series },{ td x∇  
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where p and q are non-negative integers, ,00 =c ,ia ,ib  

jc  and jd are real numbers for i = 1 to p, and j = 1 to q. 
We refer to (11) as the generalized seasonal ARMA model 
of },{ tx or GSARMA for short.  

It should be pointed out that model (11) bears a 
strong resemblance to the non-multiplicative seasonal 
models in Liu (2006, p. 3.15, p. 4.3), but it differs from 
Liu’s in that the autoregressive polynomial of }{ xd∇ is 
also non-multiplicative in (11). In addition, by properly 
choosing parameters in (11), multiplicative models can be 
derived. For example, if d = 0, 11 −=a , 112 =b and 

113 −=b , and all other parameters in the autoregressive 
part are zeros, then model (11) will reduce to the multipli-
cative seasonal model in Box, Jenkins and Reinsel (1994, 
p. 333). Hence, if the time series is indeed a multiplicative 
seasonal time series, then (11) should be able to represent 
it well. Now, our task is to determine S, d and then iden-
tify p and q, and estimate the model parameters in (11) 
automatically for a nonstationary seasonal time series 

}.{ tx  This can be achieved by applying the following 
algorithms. 

4.1 Algorithm to Determine S 

In Box, Jenkins and Reinsel (1994, p. 342), the auto-
correlation function of }{ tx∇ is used to determine the 
seasonality of time series }.{ tx  We employ the same 
algorithm for the same purpose here. This algorithm can 
be described as follows. 

 
Algorithm to Determine S 

Step 1. Difference time series }{ tx  to obtain }{ tx∇ . 
Step 2. Calculate the autocorrelation function values 

of }{ tx∇ . 
Step 3. Check the nonzero lag S at which the auto-

correlation function value achieves the max- 
imum. Then, S is the seasonality, and stop. 

 
This algorithm is based on the observation that for 

seasonal time series, its autocorrelation function also ex-
hibits the same seasonality. But, differencing the time 
series may remove the trend in the data so that a pure 
seasonal time series may be obtained, and hence it makes 
the autocorrelation function values more effective in de-
tecting the seasonality. The maximum value and hence 
the corresponding lag of the autocorrelation function can 
be found easily with a linear search algorithm. Implicitly, 
this algorithm assumes that the autocorrelation function 
achieves its maximal value when the lag is coincident 
with the seasonal length. However, our experience and 
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observation indicate that the effectiveness of this algo-
rithm depends on, to a certain degree, the level of noise in 
the time series. 

4.2 Algorithm to Determine d 

One of the functionalities of the operator d∇ is to 
eradicate any trends existing in the time series. Therefore, 
to determine the value of d, it is necessary to test if the 
existing trend can be eliminated by properly differencing 
the time series d times. This implies that if the differenced 
time series still has a trend, then it is necessary to differ-
ence the data again. To detect the trend in the data, a lin-
ear regression model can be set up using the original data, 
and the linear coefficient is tested (Neter, Wasserman and 
Kutner, 1990). If this coefficient is significant, then this 
indicates strongly that a linear trend exists in the data. In 
this case, differencing the time series is necessary, and 
after differencing the time series, a linear regression 
model is set up again using the differenced time series 
data, and the linear coefficient is tested again. This proc-
ess may repeat for a few times. Therefore, d can be de-
termined with the following algorithm. 

 
Algorithm to Determine d 

Step 1. Set d = 0, and define a significance level α. 
Step 2. Set up a linear regression model using the 

current time series data. 
Step 3. Check if the linear coefficient is significant. 

If yes, go to Step 4. Else, d is found and the 
algorithm stops. 

Step 4. Set d = d +1 and difference the current time 
series to get a new one }.{ td x∇  Go to Step 2. 

 
We must point out that in the literature, such as in 

(Brockwell and Davis, 1996; Franses and Paap, 2004), 
different methodologies exist in modeling trend and trend 
eliminations. We will however, not pursue these well de-
veloped methodologies in this paper. 

4.3 Algorithm to Determine )()( SBB Φφ  and  
)()( SBB Θθ  

We propose the following algorithm to determine the 
product polynomial )()( SBB Φφ and the product polyno-
mial )()( SBB Θθ . 

 
The Algorithm 

Step 1. Set the order p of )()( SBB Φφ in (11) to be 1. 
Step 2. Estimate the parameters ,ia ib  of )()( SBB Φφ  

for i = 1 to p, and calculate the model re-
siduals. Use the S-E algorithm to test if the 
residuals are an MA series. If yes, then go to 
Step 3 with q identified. Else, set p = p + 1, 
and repeat Step 2. 

Step 3. Set the order of )()( SBB Θθ in (11) to be q. 
Then, estimate the parameters of )()( SBB Θθ , 
and calculate the model residuals. Apply the 
S-E algorithm to test if the residuals are a 
white noise. If yes, stop. Else, set p = p + 1, 
and go to Step 2. 

 
This algorithm, with an extraordinary resemblance to 

the S-E algorithm, has obvious advantages. First, it relies 
on the probabilistic structure of the modeling errors to 
determine the properness of the order and parameters of a 
model. Thus, Algorithm 1 in Song and Esogbue (2006) 
can be used directly here to test the characteristics of 
model residuals. This makes it easy to automate the mod-
eling process. In addition, it does not need more than only 
the necessary calculations to determine the model order as 
other algorithms may, such as the extended autocorrela-
tion function method (Liu, 2006). This new algorithm is 
in line with the parsimony principle of modeling because 
it starts from the smallest possible values of p or q, and 
increases the value one at a time and terminates the first 
time when the modeling error becomes a white noise. The 
only constraint on the polynomials is that the seasonal 
and the non-seasonal parts have the same number of 
terms. 

In general, we may consider polynomials with the 
following forms as the products of )(Bφ and ),( SBΦ  and 
of )(Bθ and ),( SBΘ  respectively, 
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In this form, the current value of the time series is 

associated with the values in the past P instants, and also 
the values S, 2S, ⋯, and kS lags apart from each of these 
past P instants. The same can be said about the observa-
tions and the model errors. A special case would be to 
choose k = 2 in (12) and (13). Then, we would have 
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More general cases can also be considered and the 

proposed algorithm can be easily applied with a minimum 
amount of modification.  
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5.  EXTENSION TO PERIODIC TIME   
SERIES MODELS  

The difference between a seasonal time series model 
and a periodic time series model lies in the fact that the 
former uses only one model and one set of parameters for 
all different seasons while the latter uses an individual 
model and an individual set of parameters for each season. 
From the modeling point of view, seasonal time series 
models employ much fewer parameters than periodic 
time series models for the same time series. For this rea-
son, it is expected that periodic time series models can 
have better forecasts. However, this is not always the case. 

In this section, we only consider extensions of the S-
E algorithm to building periodic autoregressive models 
(PAR) for seasonal time series. As periodic autoregres-
sive-moving average (PARMA) models are much harder 
to build automatically, extension to such cases will be 
handled differently and separately. 

When using periodic autoregressive models, as shown 
in (McLeod, 1992, 1994), the autocorrelation functions of 
residuals of the models of different seasons are asymp-
totically uncorrelated. Theoretically, this provides the po- 
ssibility of applying the S-E algorithm to build a seasonal 
time series model for each individual season independ-
ently, including model identification, parameter estima-
tion, and model diagnostics. As this is a straightforward 
application of the new algorithm, we only outline the pro-
cedure below. Details of the process can be filled readily, 
and therefore will not be elaborated on in the sequel. 

Suppose { }tx is a seasonal time series with S as the 
periodicity. Without loss of generality, suppose that the 
data can be partitioned into a few different segments each 
of which contains exactly S data points. Then, time index 
t can be expressed as mrSt +=  where ),mod( Str = , 
m = 1, 2, ⋯, S and m is the seasonal index. To illustrate, 
if we have monthly data, then S = 12, and for each data 
we can locate the year of the data and also the month. 
Then, r and m can be determined accordingly. To proceed, 
suppose for each seasonal index m, the corresponding AR 
model is given below where the notation in Franses and 
Paap (2004) and McLeod (1994) is followed,  
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where mp is the order of the PAR model, mia , are model 
parameters, and ),( mrε is the model residual, presumably 
a white noise. Note that model (16) is only for season m 
where m = 1 to S. For different seasonal indices m, both 

mp and mia , can be different. From the modeling point of 
view, model (16) describes how the current observation at 
season m of the time series is related to the most recent 
and adjacent observations. The estimated autocorrela-
tion function of ),( mrε is given by the following formula 

(McLeod, 1992), 
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where k is the lag and m is the seasonal index from 1 to S. 
Note that in calculating )(ˆ kmρ  for season m, residuals of 
models of different seasons are required. The asymptotic 
distribution of )(ˆ kmρ  can be found in (McLeod, 1978), 
and can be used in model identification for a PAR model. 
Moreover, as mentioned earlier, it has been shown that the 
theoretic autocorrelation functions of the residuals are as- 
ymptotically independent for different seasons (McLeod, 
1992). This implies that model identification of PAR 
models can be approximately carried out independently 
for different seasons.  

Nonetheless, it must be pointed out that the calcula-
tions of the estimated residual autocorrelation coefficients 

)(ˆ kmρ  of different seasons are interdependent. This, as 
can be expected, creates difficulty in an automated model 
building process. This is because if it is found that the 
model residuals for a specific season are not a white noise, 
it is still hard to know whether it is due to the misspecifi-
cation of the model for the current season, or due to the 
misspecification of models of other seasons. This causes 
difficulty in making a decision on model order selection, 
and this can lead to a combinatorial decision problem, 
which should be avoided for now. For this reason, in this 
paper we want to explore the possibility of building PAR 
models using only model errors of the same season. The 
assumption is that if all the models are properly built, then 
the model errors must be white noise for all seasons. In 
this case, for each season, the modeling errors must be 
also a white noise. Although the inverse is not true in 
general, we want to develop an approximate but practical 
algorithm for automated PAR modeling, and will verify 
the effectiveness through examples. Specifically, we can 
use the S-E algorithm to build a PAR model for each sea-
son automatically and independently of other seasons. 
When models for all seasons are identified properly, the 
modeling task is completed.  

To proceed, note that although (16) is called a peri-
odic time series model, it does not model the relation be-
tween the current observation and the observation of the 
same season explicitly, albeit when SPm >  model (16) 
will contain observations of the same season. It is not 
clear to the author why this is the case. Therefore, it is 
interesting to see if observations of the same season can 
be included in the model directly in addition to the adja-
cent observations. The following model can be used to 
achieve this goal, 
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or we can use the following alternative form as the model, 
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For notational convenience, (18) and (19) will be re-

ferred to as the generalized periodical AR models, or 
GPAR for short. Variants of these two models exist. From 
(18) or (19), it can be seen that the Algorithm presented in 
Section 4.3 of this paper can be used directly. Thus, ex-
tension of the S-E algorithm to periodical autoregressive 
models is quite straightforward. Note that for all these 
models, this new algorithm will first identify mP and mR  
for each season, then estimate the parameters, and finally 
diagnose the goodness-of-fit of the model. All the model-
ing process can be carried out automatically. 

6.  NUMERICAL EXAMPLES 

In this section, we provide modeling and forecasting 
examples using the new algorithms applied to a number 
of data sets obtained from the literature and in the retail 
industry. Both seasonal time series models and periodic 
time series models will be illustrated. To apply the new 
algorithms, we implemented the algorithm in Section 4.1 
using Java to identify periodicities, the algorithm in Sec-
tion 4.2 to detect trends where the significance level is set 
to be 0.95, and the algorithm in Section 4.3 to identify 
model types and orders, used model (11) as the seasonal 
time series models for all the relevant illustration exam-
ples, and model (18) as the periodic time series models. In 
addition, only ACF of the residuals is used in model iden-
tification. 

6.1 Illustration 1. Airline Data  

The airline data have been used widely in the litera-
ture as examples of modeling seasonal time series. In Box, 
Jenkins and Reinsel (1994), a multiplicative seasonal (0, 1, 
1) × (0, 1, 1)12 model is used to model the airline data. 
The polynomial form of the model can be expressed as 
follows,  

 
( )( ) tt BBx εΘθ 12

12 11 −−=∇∇    (20) 
 
where θ  and Θ  are the model parameters whose esti-
mated values are 4.0ˆ =θ  and 6.0ˆ =Θ  respectively (Box, 
Jenkins and Reinsel,1994). The one-month-ahead fore-
casts for the last three years can be obtained with the 
MAPE being 1.26% and the forecasts are calculated using 
(20) recursively for the last 36 months. Figure 1 presents 
the forecast and the actual data. 

For comparison purposes, a seasonal ARMA model 
is built automatically using the proposed algorithm. To do 
so, the last three years’ data are not used in modeling, but 
are used only in forecasting accuracy calculation. Briefly, 
the first task for the algorithm is to test if there exists a 
trend in the data. After testing the existence of a trend, the 
algorithm differences the data once, and then tests the 
existence of trend in the differenced data. Then, after de-
tecting no trends in the differenced data, the algorithm 
detects the existence of periodicity of the seasonal time 
series, and finds the periodicity to be 12. Next, the algo-
rithm assumes a seasonal GSAR(1) model for the differ-
enced time series, i.e., it assumes the following model 

tttt xbxax ε+∇+∇=∇ −− 12111  and identifies the parameters 
1a  and 1b  using the least square method. Once the pa-

rameters are estimated, the model residuals are calculated 
and the autocorrelation functions of the residuals are es-
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Figure 1. Actual airline data and the forecast with the Box-Jenkins model for the last three years 
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timated. The algorithm finds that the autocorrelation func-
tion of the residuals is not that of a white noise or an MA 
process. Hence, it increases the order of AR part by 1 and 
then a seasonal GSAR(2) model 2211 −− ∇+∇=∇ ttt xaxax  

ttt xbxb ε+∇+∇+ −− 132121  is tested. After all the 4 parame-
ters are estimated, the autocorrelation function of the 
model residuals is estimated, and the algorithm checks 
and finds that the autocorrelation function can be treated 
as that of a white noise at the significance level 90%. 
Then, the algorithm terminates. The final SAR(2) model 
built by the automated algorithm is shown below, 

ttt

ttt

xx
xxx

ε+∇+∇+
∇−∇−=∇

−−

−−

1312

21

339.0913.0
035.0296.0

  (21) 

 
The estimated autocorrelation function is plotted in Fig-
ure 2 where it can be seen that at the given significance 
level the residuals can be treated as a white noise, but at a 
few lags the correlation values are still quite large. If we 
increase the significance level, the order of the identified 
model will be increased. To get forecasts tx̂ for t = 109 to  
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Figure 2. Estimated autocorrelation function of the residuals for the airline data. 
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Figure 3. Actual airline data and the forecast with the new algorithm for the last three years 
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144, we use the following formula 108

1

108

ˆ xxx
t

i
it +∇= ∑

−

=

where  

ix∇ is obtained recursively using model (21) for i = 108 
to 143, and 108x is the initial condition. With the new algo-
rithm and model (21), the MAPE of the forecasts for the 
last three years is 0.72%, and the forecasts are plotted in 
Figure 3. It can be seen that the new model has improved 

the forecast accuracy by about 40% compared to the Box-
Jenkins model (20) which yields a MAPE of 1.26%. 

6.2 Illustration 2. Retail Daily Demand Forecast 

In the retail industry, it is often required to have the 
daily demand forecast for the entire coming week for 
workforce schedule purposes. The forecast accuracy has 
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Figure 4. Plot of the actual daily sales data 

 
Table 1. Retail Daily Sales Data (data is read cross the row from left to right) 

26796 27472 29068 28590 32300 26596 26690 28604 25820 42014 
33204 34278 35620 32762 38424 33038 31550 34080 32262 43594 
38260 38054 40498 37944 55144 34918 34636 35150 37070 40490 
44716 49580 48104 46678 41948 43002 44804 47914 45568 45026 
47928 36680 39054 38100 30852 46014 44222 45714 48342 50686 
32480 34770 35680 31886 30874 34876 32522 32392 34552 22518 
30030 30536 31684 28548 27838 33888 28304 27808 29614 29018 
29914 29394 29970 28272 26912 30610 27558 28960 27680 29682 
35324 34886 33504 32086 33080 32976 40566 33304 32794 33238 
38730 37758 38168 37134 35660 34902 38140 34842 37094 36302 
42076 48258 44372 44666 41588 47068 44352 44432 45810 45622 
47316 45884 43404 41230 41688 46562 45286 46350 44176 50018 
34286 35198 34448 31118 33690 33520 30324 34028 35418 31144 
28412 29714 28860 26816 28640 30398 27868 27614 30934 30378 
29278 27892 28616 28224 27658 28192 28660 25126 28648 27950 
33222 31926 32118 40600 34990 32882 39722 35064 32886 34964 
36424 35486 36912 45822 34606 35888 41852 36262 38328 35460 
43446 44456 43568 50126 42820 47132 50212 46348 43826 46902 
46102 43628 40646 45626 42076 45034 41150 45090 48618 45650 
33166 34900 35046 34062 32218 34128 39156 31100 34834 32996 
29544 28540 29812 30818 29400 29374 32306 27322 31754 29698 
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some degree of impact on the workforce schedules. Over-
age in daily demand forecast could lead to over-schedules 
of employees and incurs labor cost to the store, and un-
derage in forecast could cause under-schedules of em-
ployees, and in turn this may create customer dissatisfac-
tion when not enough staffs are available. So, having 
good daily demand forecast is important. In this example, 
we will create a seasonal time series model using the new 
algorithm automatically, and calculate the daily forecast 
for an entire week.  

The data of total daily sales are from a client for a 
period of 210 days, as shown in Table 1. Our task is to let 
the new algorithm automatically build a seasonal time 
series model using the first 203 days’ data, and then we 
will apply the model to forecast the daily sales for the last 

week. As can be seen from Figure 4, no trends can be 
detected visually and this is verified by the algorithm. 
Then, the algorithm detects the periodicity of the data as 7. 
After this, the algorithm automatically builds the follow-
ing GSARMA(1, 1) model, 

 
771 018.0212.0814.01824.0 −−− +++= ttttt xxx εε  (22) 

 
The autocorrelation function of the residuals of the model 
is shown in Figure 5 which indicates the properness of the 
model. The MAPE of the forecast over the last week is 
5.25% which is a good forecast accuracy measure in retail 
forecasting. Figure 6 exhibits the actual and the forecast 
for the last week, and Table 2 lists the data. 
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Figure 5. Estimated autocorrelation function of the residuals using the new algorithm for the retail daily demand data 
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Figure 6. Actual and forecast of daily sales with the new algorithm 
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6.3 Illustration 3. Monthly Accidental Deaths Data 

This data set has been used in Brockwell and Davis 
(1996) as an illustrative example of modeling seasonal 
time series. We want to use the new algorithm to build a 
model for this data set and get the forecast so that com-
parisons can be made with the forecast from Brockwell 
and Davis (1996). This data set contains 78 data points 
over a period of 7 years. In Brockwell and Davis (1996), 
the first 72 data are used to build a seasonal time series 
model using the estimated autocorrelation function as the 
tool to select models, and using the maximum likelihood 
method to select the parameters. This leads to the follow-
ing two models (Brockwell and Davis, 1996), 

Model 1: tt BBx ε)588.01)(478.01(831.28 1212 −−+=∇∇  

Model 2: 6112 407.0596.0831.28 −− −−+=∇∇ ttttx εεε  

1312 460.0685.0 −− +− tt εε  
 

Then, forecast is made for the last 6 months and compari-
sons of the forecast and the actual data are made. Table 3 
lists the forecasts of the above two models with the 
MAPEs being 6.10% and 4.80% respectively. The new 
algorithm, after successfully detecting the periodicity of 
12 and failing to find a significant trend in the data, auto-
matically builds the following GSAR(1) model using the 
first 72 data points  
 

tttt xxx ε++= −− 121 588.0402.0   (23) 

Table 3. Actual Accident Death Data and Forecasts with 3 Different Models 

Time 73 74 75 76 77 78 MAPE 
Actual 7798 7406 8363 8460 9217 9316 N/A 

Model 1 8441 7704 8549 8885 9843 10279 6.10% 
Model 2 8345 7619 8356 8742 9795 10179 4.80% 

New Model 8322 7398 7555 7817 8501 8964 5.94% 

Note : Model 1 and Model 2 are from Brockwell and Davis, 1996. 
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Figure 7. Estimated autocorrelation function of the residuals of the death data using the new algorithm at the significance  

level 0.9 

Table 2. Actual and Forecasted Daily Sales with 2 Different Models 

    
Day 1 2 3 4 5 6 7 MAPE 

Actual Data 27950 34964 35460 46902 45650 32996 29698 N/A 
Seasonal 
Model 29856 32307 35328 43533 48682 34215 31021 5.25% 

Periodic 
Models 29749 34754 37507 45391 46779 32800 29617 2.77% 
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Figure 7 shows the estimated autocorrelation function of 
the residuals which is treated by the algorithm as that of a 
white noise at the significance level of 0.9. The forecasts 
using this model for the last 6 months are listed in Table 3 
where the MAPE is found to be 5.94%. Compared to the 
forecast results using the two models in Brockwell and 
Davis (1996), the new model generates forecasts slightly 
better than those of Model 1, but worse than those of 
Model 2. In Table 3, it is interesting to note that Model 1, 
which contains 3 parameters, has the highest MAPE of 
forecasts, the new model has 2 parameters and has a 
slightly lower MAPE, and Model 2 has 5 parameters with 
the best forecast results. It seems that there is a trade-off 
between model parsimony and forecasting accuracy. The 
structure of the model also has an important impact on 
forecasting accuracy. 

6.4 Illustration 4. Periodic Models of Retail Daily 
Demand 

In this example, we show how to apply the new al-
gorithm to automatically build periodic models for the 
retail daily demand data used in Illustration 2. Our goal is 
to automatically build a PAR model for each season. In 
this illustration, we have 7 seasons each for a weekday of 
the week. The new algorithm builds the following seven 
GPAR(1) models of (18) automatically, 

 
)0,(7)0,(1)0,()0,( 218.0767.0 rttr xxx ε++= −−  

)1,(7)1,(1)1,()1,( 357.0770.0 rttr xxx ε++= −−  

)2,(7)2,(1)2,()2,( 314.0751.0 rttr xxx ε++= −−  

)3,(7)3,(1)3,()3,( 812.0223.0 rttr xxx ε++= −−  

)4,(7)4,(1)4,()4,( 484.0498.0 rttr xxx ε++= −−  

)5,(7)5,(1)5,()5,( 575.0319.0 rttr xxx ε++= −−  

)6,(7)6,(1)6,()6,( 446.0490.0 rttr xxx ε++= −−  
 

It seems that no models are quite similar to each other for 
different seasons. Note that the data of the last week are 
not used in model building. Forecast is performed for the 
last week with a MAPE as 2.77% which is much better 
than that of using a seasonal model in Illustration 2. Table 
2 lists the forecasts for the entire week using the GPAR(1) 
models. Significance level is again 90% in testing white 
noise of the modeling errors in the algorithm. For each 
season, only 29 error data points are obtained and used to 
estimate the autocorrelation coefficients. From the model 
diagnostics point of view, more data are needed. But, 
from the practical forecast point of view, the results are 
very satisfactory. It is worth to point out that some of the 
models identified above are not stationary, which can be 
verified by checking the parameters of the models. How-
ever, this should not be a serious problem here as the 
models are used to forecast for one data point only, and 

new models will be identified for a new data point. With 
respect to each season, we note that only 29 data points 
are used in modeling and this might be the cause for the 
non-stationarity of the models. 

For convenience and comparison purpose, we pro-
vide Table 4 which summarizes the forecasting perform-
ances of all the models and data sets in the examples. 

 
Table 4. Summary of Forecasting Performance of Different 

Models 

Data Sets Models MAPE of Forecast
Box-Jenkins Model 1.26% Airline  

Data Set New Model 0.72% 

Seasonal 5.25% Retail Daily 
Sales Data Periodic 2.77% 

Model 1 6.10% 

Model 2 4.80% Death  
Data Set 

New Model 5.94% 

Note : Model 1 and Model 2 are from Brockwell and 
Davis, 1996. 

7.  DISCUSSION AND CONCLUSION 

In this paper, new automated algorithms are pro-
posed for creating both seasonal and periodic models for 
nonstationary seasonal time series. This includes detect-
ing trends, estimating seasonalities, identifying model 
types and orders, and estimating model parameters. Algo-
rithms are outlined for two different cases and models, 
and numeric examples are provided. The numeric exam-
ples indicate that the algorithms are practical and effective. 
More importantly, in all the illustration examples, the 
resultant models are built automatically without any hu-
man interventions, which is the goal of this paper. 

The seasonal time series models of (11) to (15) can 
be seen as a generalization of the seasonal time series 
models in Box, Jenkins and Reinsel (1994) as we adopt 
more general forms for the polynomials of B and BS in the 
model whereas in the seasonal models of Box, Jenkins 
and Reinsel (1994), specific forms of the polynomial are 
employed, leading to, for example, various multiplicative 
seasonal models. However, it is possible that in the gener-
alized seasonal models, more parameters may be included.  

Periodic time series models have been studied exten-
sively in the literature. Models (18) and (19) can be seen 
as a generalization of the popular models in the literature 
(Franses and Paap, 2004; McLeod, 1992). In the general-
ized models, observations of the same season are explic-
itly included whereas in the literature these observations 
may not be included in the model at all if the order of the 
model is smaller than the periodicity of the time series. 
Additionally, in the literature, model diagnostics depends 
on the autocorrelations given by (17) whose calculations 
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are interdependent for different seasons. In this paper, the 
generalized periodic time series model diagnostics is car-
ried out by using the model residuals of the same season. 
The numeric results seem to indicate no contradictions to 
such a strategy. Although these results are very satisfac-
tory, we propose to conduct in the future more numeric 
explorations to verify the effectiveness of this strategy. 
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