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Abstract
Time series are used in many studies for model building and analysis. We must be very careful to understand

the kind of time series data used in the analysis. In this review article, we will begin with some issues related to
the use of aggregate and systematic sampling time series. Since several time series are often used in a study of
the relationship of variables, we will also consider vector time series modeling and analysis. Although the basic
procedures of model building between univariate time series and vector time series are the same, there are some
important phenomena which are unique to vector time series. Therefore, we will also discuss some issues related
to vector time models. Understanding these issues is important when we use time series data in modeling and
analysis, regardless of whether it is a univariate or multivariate time series.

Keywords: temporal aggregation, systematic sampling, unit root test, causal relationship, vector
time series, contemporal aggregation

1. Introduction

Let zt be a time series process. For a stationary process, its mean, E(zt) = µ, and variance, γz(0) =
E(zt − µ)2 = σ2

z , are constant. Also, in this case, its autocovariance function (ACF) between zt

and zt+k, γz(k) = E(zt − µ)(zt+k − µ) = E(żt żt+k), and autocorrelation function, ρz(k) = γz(k)/γz(0),
are functions of only the time difference. The partial autocorrelation function (PACF) is defined as
ϕkk = Corr(zt, zt+k |zt+1, . . . , zt+k−1). Some commonly used time series processes or models are:

(1) Autoregressive process of order p (AR(p) model)

żt − ϕ1żt−1 − · · · − ϕpżt−p = at,(
1 − ϕ1B − · · · − ϕpBp

)
żt = at,

ϕp(B)żt = at. (1.1)

(2) Moving average process of order q (MA(q) model)

żt = at − θ1at−1 − θ2at−2 − · · · − θqat−p

=
(
1 − θ1B − θ1B2 − · · · − θqBq

)
at

= θq(B)at. (1.2)
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(3) Autoregressive moving average process (ARMA(p, q) model)

ϕp(B)żt = θq(B)at. (1.3)

(4) Autoregressive integrated moving average process (ARIMA(p, d, q) model)

ϕp(B)(1 − B)dzt = θ0 + θq(B)at. (1.4)

The model is stationary if the roots of its associated AR polynomial are all outside the unit circle, and
the important characteristics of stationary models can be summarized in the following table:

Model ACF PACF
AR(p) Decreases exponentially Cuts off at lag p
MA(q) Cuts off at lag q Decreases exponentially
ARMA(p, q) Decreases exponentially Decreases exponentially

2. Temporal Aggregation Effect on Model Form

Time series are used in many studies either for model building or inference. We must be careful
when choosing what kind of time series data is used in the analysis. Since many time series variables
like rainfall, industrial production, and sales exist only in some aggregated forms, we will begin with
the issue related to the temporal aggregation effect on the model form. Given a time series zt, let
ZT = (1 + B + · · · + Bm−1)zmT . For example, with m = 3, Z1 = (1 + B + B2)z3 = z1 + z2 + z3,
Z2 = (1 + B + B2)z6 = z4 + z5 + z6, etc. We will call zt as non-aggregate series and ZT as aggregate
series. For m = 3 if zt is a monthly series, then ZT will be a quarterly series. To make inference,
should we use non-aggregate series, zt or aggregate series, ZT ? Do they make any difference? Are the
time series models for zt and for ZT the same?

The first published papers on aggregation effects on ARIMA models were by Tiao (1972) and
Amemiya and Wu (1972), and they led to many other studies on the topic including my Ph.D. disser-
tation and life time research in the area.

To answer the above questions, we need to study the relationship of autocovariances between
the non-aggregate and aggregate series zt and ZT , or more generally between wt = (1 − B)dzt and
UT = (1 − B)dZT . Define the m-period overlapping sum,

ζt =

m−1∑
j=0

zt− j =
(
1 + B + · · · + Bm−1

)
zt,

and note that ZT = ζmT , (1 − B)ZT = ZT − ZT−1 = ζmT − ζm(T−1) = (1 − Bm)ζmT ,

UT = (1 − B)dZT = (1 − Bm)dζmT

=
[(

1 + B + · · · + Bm−1
)

(1 − B)
]d (

1 + B + · · · + Bm−1
)

zmT

=
(
1 + B + · · · + Bm−1

)d+1
(1 − B)dzmT

=
(
1 + B + · · · + Bm−1

)d+1
wmT .

Hence, we have

γU(k) =
(
1 + B + · · · + Bm−1

)2(d+1)
γw(mk + (d + 1)(m − 1)). (2.1)
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Now let us consider an MA(2) model for zt, zt = (1 − θ1B − θ2B2)at. If m = 3, what is the model for
ZT ? For this MA(2) model, we have

γz(0) =
(
1 + θ2

1 + θ
2
2

)
σ2

a,

γz(1) = (−θ1 + θ1θ2)σ2
a,

γz(2) = −θ2σ
2
a,

and

γz( j) = 0, | j| > 2.

Note that for d = 0 and m = 3, from (2.1), we have

γZ =
(
1 + B + B2

)2
γz(3k + 2) =

(
1 + 2B + 3B2 + 2B3 + B4

)
γz(3k + 2),

where


γZ(0)
γZ(1)
γZ(2)
γZ(3)

 =


1 2 3 2 1 0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 2 1 0 0 0 0 0 0
0 0 0 0 0 0 1 2 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 1 2 3 2 1





γz(−2)
γz(−1)
γz(0)
γz(1)
...

γz(11)



=


3 4 2 0 0 0 0 0 0 0 0 0
0 1 2 3 2 1 0 0 0 0 0 0
0 0 0 0 1 2 3 2 1 0 0 0
0 0 0 0 0 0 0 1 2 3 2 1





γz(0)
γz(1)
γz(2)

0
...
0


=


3γz(0) + 4γz(1) + 2γz(2)

γz(1) + 2γz(2)
0
0

 .
Hence, ZT is a MA(1) process, ZT = (1 − ΘB)AT where

γZ(0) =
(
1 + Θ2

)
σ2

A = 3
[
1 + θ2

1 + θ
2
2

]
σ2

a + 4[−θ1 + θ1θ2]σ2
a + 2[−θ2]σ2

a,

γZ(1) = −Θσ2
A = [−θ1 + θ1θ2]σ2

a + 2 [−θ2]σ2
a,

1 + Θ2

−Θ =
3
[
1 + θ2

1 + θ
2
2

]
+ 4[−θ1 + θ1θ2] + 2[−θ2]

[−θ1 + θ1θ2] + 2 [−θ2]
,

and

σ2
A =

[−θ1 + θ1θ2]σ2
a + 2[−θ2]σ2

a

−Θ .
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More generally, we have the following results from Stram and Wei (1986):

(1) Temporal aggregation of the AR(p) process

Suppose that the non-aggregate series zt follows a stationary AR(p) process,(
1 − ϕ1B − · · · − ϕpBp

)
zt = at.

Let ϕp(B) = (1 − ϕ1B − · · · − ϕpBp)zt and δ−1
i for i = 1, . . . , p∗ be the distinct roots of ϕp(B), each

with multiplicity si such that
∑p∗

i=1 si = p. For any given value of m, let b equal the number of
distinct values δm

i for i = 1, . . . , p∗. Furthermore, partition the numbers si for i = 1, . . . , p∗ into
b distinct sets Ai such that sk and s j ∈ Ai if and only if δm

k = δ
m
j . Then the mth order aggregate

series, ZT follows an ARMA(M,N1) model,(
1 − α1B − · · · − αMBM

)
ZT =

(
1 − β1B − · · · − βN1BN1

)
ET ,

where M =
∑b

i=1 max Ai, max Ai = the largest element in Ai, N1 = [p+1− (p+1)/m]− (p−M) =
[M + 1 − (p + 1)/m], the ET are white noise with mean 0 and variance σ2

E , and αi, β j, and σ2
E are

functions of ϕk’s and σ2
a.

(2) If zt ∼ARMA(p, q) model, then ZT ∼ARMA(M,N2), where N2 = [p+1+(q−p−1)/m]−(p−M).

(3) If zt ∼ ARIMA(p, d, q) model, then ZT ∼ ARIMA(M, d,N3), where N3 = [p + d + 1 + (q − p −
d − 1)/m] − (p − M).

The limiting behavior of aggregates was studied by Tiao (1972) and he showed that given zt ∼
ARIMA(p, d, q) model, the limiting model for the aggregates, ZT exists, and as m → ∞, ZT →
IMA(d, d).

When a variable is a stock variable and we observe only every mth value of the variable, i.e., given
z1, z2, z3, . . . but we observe only ZT = zmT . For example, for m = 3, Z1 = z3,Z2 = z6, . . . . We have
the following interesting result from Wei (1981).

Given zt ∼ IMA(d, q): (1 − B)dzt = (1 − θ1B − θ1B2 − · · · − θqBq)at. Let ZT = zmT . Then, as
m → ∞, ZT → IMA(d, d − 1). Theoretically, every ARIMA(p, d, q) process can be approximated by
an IMA(d, q) process. Thus, if zt is an ARIMA(p, 1, q), then as m → ∞, ZT approaches IMA(1, 0),
which could very likely explain why most daily stock prices follow a random walk model. In building
an underlying time series model, we need to be aware of the effect of the use of aggregate series.
In addition to the above cited references, we refer readers to some other useful references including
Brewer (1973), Wei (1982), Ansley and Kohn (1983), Weiss (1984), Wei and Stram (1988), Mar-
cellino (1999), Shellman (2004), and Sbrana and Silvestrini (2013).

3. Aggregation Effect on Testing for a Unit Root

Given the AR(1) model

zt = ϕzt−1 + at, (3.1)

where at is N(0, σ2
a) white noise process and t = 1, 2, . . . , n. To test a unit root, H0: ϕ = 1 vs H1:

ϕ < 1, since

ϕ̂ =

∑n
t=2 zt−1zt∑n
t=2 z2

t−1

= 1 +
∑n

t=2 zt−1at∑n
t=2 z2

t−1

.
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Dickey and Fuller (1979) suggested using the following test statistic and showed that under H0: ϕ = 1,

n(ϕ̂ − 1) =
n−1 ∑n

t=2 zt−1at

n−2 ∑n
t=2 z2

t−1

D−→
1
2

{
[W(1)]2 − 1

}
∫ 1

0 [W(x)]2dx
, (3.2)

where W(t) is a Wiener process (also known as Brownian motion process). We reject H0 if the value
of the test statistic is too small (negative).

In practice, aggregate data, ZT = (1 + B + · · · + Bm−1)zmT are often used. It has been shown by
Teles et al. (2008) that under H0: ϕ = 1, (1 − B)zt = at, the corresponding model for the aggregate
series is

ZT = ZT−1 + ET − ΘET−1, (3.3)

where the ET−1 are independent and identically distributed variables with zero mean and variance σ2
E

and the parameters Θ and σ2
E are determined as follows:

(1) If m = 1, then Θ = 0; σ2
E = σ

2
a;

(2) If m ≥ 2, then

Θ = −2m2 + 1
m2 − 1

+


(

2m2 + 1
m2 − 1

)2

− 1


1
2

,

σ2
E = σ

2
a

m
(
2m2 + 1

)
3
(
1 + Θ2) .

As a result, the corresponding test statistic becomes

N
(
ϕ̂ − 1

)
=

N−1 ∑N
T=2 ZT−1ET

N−2 ∑N
T=2 Z2

T−1

− Θ
N−1 ∑N

T=2 ZT−1ET−1

N−2 ∑N
T=2 Z2

T−1

D−→
1
2

{
[W(1)]2 − 1

}
∫ 1

0 [W(x)]2dx
+

m2−1
6m2∫ 1

0 [W(x)]2dx
. (3.4)

Comparing with (3.2), we see that the limiting distribution of the test statistic for the aggregate
time series depends on the order of aggregation m. Since m ≥ 2, the distribution of the test statistic
is shifted to the right, and the shift increases with the order of aggregation. Aggregation leads to
empirical significance levels lower than the nominal level and significantly reduces the power of
the test.

Example 1. In this example, we simulated a time series of 240 observations from the model zt =

0.95zt−1 + at where the at are i.i.d. N(0, 1). This series was then aggregated with m = 3.

(1) Test a unit root based on non-aggregate series, zt (240 observations). Based on the sample au-
tocorrelation function and partial autocorrelation function, we have an AR(1) model. The least
squares estimation leads to the following result

ẑt = 0.9603
(.0182)

zt−1.
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To test the hypothesis of a unit root, the value of the test statistic is

n
(
ϕ̂ − 1

)
= 240(0.9603 − 1) = −9.53.

At α = 5%, the critical point from Dickey and Fuller (1979) is between −8.0 and −7.9 for n = 240.
Thus, the hypothesis of a unit root is rejected, and we conclude that the underlying model is
stationary. This is consistent with the underlying simulated model.

(2) Test a unit root with aggregate series, ZT , with m = 3 (80 observations). The sample autocorrela-
tion function and partial autocorrelation function suggest an AR(1) model (an ARMA(1,1) model
was also considered but its MA parameter was not significant). The least squares estimation leads
to the following result

Ẑt = 0.9205
(.0448)

zt−1.

To test the hypothesis of a unit root, the value of the test statistic is

n
(
ϕ̂ − 1

)
= 80(0.9205 − 1) = −6.36.

Again, at α = 5%, the critical point from Dickey and Fuller (1979) is between −7.9 and −7.7 for
n = 80. Thus, the hypothesis of a unit root is not rejected, and we conclude that the underlying
model is nonstationary. This leads to a wrong conclusion. However, if we use the adjusted critical
value given in Teles et al. (2008) based on the adjusted test statistic of (3.4), which is between
−5.45 and −5.40 for n = 80, we will reject the null hypothesis of a unit root and leads to a
consistent conclusion.

When aggregate time series are used in modeling and testing, we need to make sure to use a proper
adjusted table for the test of its significance.

4. Aggregation Effect on a Dynamic Relation

Time series are often used in regression analysis, which is possible the most commonly used statistical
method. So we will also consider the consequence of the use of aggregate series in a regression model.
Let us consider the simple regression model,

yt = αxt−1 + et−1, (4.1)

which is a one-sided causal relationship. If xt−1 is also stochastic, for example, if it follows a MA(1)
process, we can also write the joint system as

xt = (1 − θB)at,

yt = α(1 − θB)at−1 + er, (4.2)

or [
xt

yt

]
=

[
(1 − θB) 0
α(1 − θB)B 1

] [
at

et

]
, (4.3)
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where at and et are independent N(0, σ2
a) and N(0, σ2

e), respectively. Let YT = (
∑m−1

j=0 B j)ymT , XT =

(
∑m−1

j=0 B j)xmT , WT = (
∑m−1

j=0 B j)xmT−1, and ET = (
∑m−1

j=0 B j)emT . Equation (4.1) implies that

YT = αWT + ET . (4.4)

For m = 3, W1 = x0 + x1 + x2, W2 = x3 + x4 + x5, etc., which are not available, and the available data
are X1 = x1 + x2 + x3, X2 = x4 + x5 + x6, etc. A natural way to estimate WT is to consider its projection
on XT . Specifically, we let Z = [WT , XT ]′ and compute its covariance matrix generating function

GZ(B) =
∞∑

k=−∞
ΓkBk = Γ0 +

∞∑
k=1

Γk

(
Bk + Fk

)
=

[
G11(B) G12(B)
G21(B) G22(B)

]
, (4.5)

with

Γ0 = E
[

WT

XT

] [
WT XT

]
= E

[
WT WT WT XT

XT WT XT XT

]
= σ2

a

[
m(1 − θ)2 + 2θ (m − 1)(1 − θ)2

(m − 1)(1 − θ)2 m(1 − θ)2 + 2θ

]
,

Γ1 = E
[

WT−1
XT−1

] [
WT XT

]
= E

[
WT−1WT WT−1XT

XT−1WT XT−1XT

]
= σ2

a

[
−θ 0

(1 − θ)2 −θ

]
,

Γk = E
[

WT−k

XT−k

] [
WT XT

]
= E

[
WT−kWT WT−kXT

XT−kWT XT−kXT

]
= 0, k ≥ 2,

and hence

G11(B) = σ2
a

{[
m(1 − θ)2 + 2θ

]
− θ(B + F)

}
= G22(B),

G21(B) = σ2
a

{
(m − 1)(1 − θ)2 + (1 − θ)2B

}
,

and

G12(B) = G21(F).

It follows that

ŴT = [G22(B)]−1G21(B)XT

=
(1 − θ)2[(m − 1) + B][

m(1 − θ)2 + 2θ
] − θ(B + F)

XT . (4.6)

It is interesting to note that Equation (4.6) can be rewritten as

ŴT =
(1 − θ)2[(m − 1) + B]

[m(1 − θ)2 + 2θ] − θ(B + F)
XT

=

[
m−1

m +
1
m B

]
XT[

1 + θ
m(1−θ)2 (1 − B)(1 − F)

] , (4.7)
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which implies that the estimate of ŴT is the weighted average of XT and XT−1 with weights (m−1)/m
and 1/m, respectively. This is clearly reasonable. The aggregate model then becomes

YT = αŴT + UT

=
α(1 − θ)2[(m − 1) + B]

[m(1 − θ)2 + 2θ] − θ(B + F)
XT + UT , (4.8)

where UT = α(WT − ŴT ) + ET = αVT + ET , GU(B) = α2GV (B) + mσ2
e , GV (B) = G11(B) −

G12(B)[G22(B)]−1G21(B) = σ2
a{[m(1 − θ)2] + 2θ − θ(B + F) − [(1 − θ)4[(m − 1) + B][(m − 1) + F]]/

[m(1 − θ)2 + 2θ − θ(B + F)]}, and F = B−1. Thus, temporal aggregation turns a one-sided causal rela-
tionship into a two-sided feedback system. It is important to note that after proposing an underlying
model for a study, one should use the same time unit in the hypothesis and data collection for model-
ing and testing. An improper use of time unit could lead to a very misleading conclusion. For a more
detailed description, we refer readers to Tiao and Wei (1976). Other useful references include Wei
(1978), and Lütkepohl (1987).

5. Issues Related to Vector Time Series Modeling

5.1. Representation of vector time series models

In studying the relationship of variables, other than the regression model, we often consider vector
time series models. Although the basic procedures of model building between univariate time series
and vector time series are the same, there are some important phenomena which are unique to vector
time series models. We now discuss some special issues of vector time models.

First, let us review some results from univariate time series models. It is well known that we can
always write a stationary process as a MA representation

Zt = µ + at + ψ1at−1 + ψ2at−2 + · · · = µ +
∞∑
j=0

ψ ja j−1,

or

Żt =

∞∑
j=0

ψ ja j−1 =

∞∑
j=0

ψ jB jat =

 ∞∑
j=0

ψ jB j

 at = ψ(B)at

such that
∑∞

j=0 |ψ j| < ∞. Similarly, we can write an invertible process as an AR representation

Żt = π1Żt−1 + π2Żt−2 + · · · + at,

or

Żt − π1Żt−1 − π2Żt−2 + · · · = at,

π(B)Żt = at,

such that
∑∞

j=0 |π j| < ∞. From these two representations, we have the well-known dual relationship
between AR(p) and MA(q) models in the univariate time series processes. That is, a finite order AR
process corresponds to an infinite order MA process, and a finite order MA process corresponds to an
infinite order AR process. For example, an AR(1) model, (1 − ϕB)Żt = at, corresponds to an infinite
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order MA process, Żt = (1− ϕB)−1at = (1+ ϕB+ ϕ2B2 + · · · )at, and a MA(1) model, Żt = (1− θB)at,
corresponds to an infinite order AR process, (1 + θB + θ2B2 + · · · )Żt = at.

Let Zt = [Z1,t, Z2,t, . . . ,Zm,t]′ be the m-dimensional vector time series. Some commonly used
vector time series models are VAR(p), VMA(q), and VARMA(p, q) processes. Again, we can write
these vector processes in a moving average representation

Żt = at + ψ1at−1 + ψ2at−2 + · · · , (5.1)

where Ż = Z − µ and at is a m-dimensional vector white noise process N(0,Σ). We can also write it
in an autoregressive representation

Żt −Π1Żt−1 −Π2Żt−2 + · · · = at. (5.2)

It follows that we can express a VAR(1) process,

Φ(B)Zt = (I −ΦB)Zt = at, (5.3)

in the following MA representation

Zt = [Φ(B)]−1at = (I −ΦB)−1at =

∞∑
j=0

Φ jat− j, (5.4)

where Φ0 = I. A natural question to ask: is the VMA representation always an infinite order? People
often think that the univariate model is a special case of the vector model with dimension equal 1, and
so the answer to the question is obviously yes. However, let us consider the following 3-dimensional
vector VAR(1) model 

Z1,t = .8Z2,t + a1,t,

Z2,t = .5Z3,t + a2,t,

Z3,t = a3,t

(5.5a)

or equivalently

(I −ΦB)Zt = at, (5.5b)

where Φ =
 0 .8 0

0 0 .5
0 0 0

. Since Φ2 , 0 and Φ j = 0 for j > 2, Equation (5.4) actually represents a

VMA(2) model. In fact,

[Φ(B)]−1 =
1

|Φ(B)|adj[Φ(B)]. (5.6)

Thus, the inverse of a non-degenerate VAR(1) matrix polynomial (i.e., Φ(B) , I) will be of a finite
order if the determinant |Φ(B)| is independent of B. For more detailed discussion, we refer readers to
Tiao and Tsay (1989), and Shen and Wei (1995).
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5.2. Representation of multiplicative seasonal vector autoregressive moving average
models

Given a univariate seasonal ARMA model

ΦP(Bs)ϕp(B)xt = θq(B)ΘQ(Bs)at, (5.7)

where

ΦP(Bs) = 1 − Φ1Bs − · · · − ΦPBPs,

ϕp(B) = 1 − ϕ1B − · · · − ϕpBp,

θq(B) = 1 − θ1B − · · · − θqBq,

ΘQ(Bs) = 1 − Θ1Bs − · · · − ΘQBQs,

and at is a Gaussian white noise process with mean 0 and a constant variance σ2
a. The model is often

denoted as ARMA(p, q)×(P, Q)s. To facilitate our discussion, we will use the order of the polynomials
appearing in the equation and denote it as ARMA(P)s(p)(q)(Q)s. When xt = [x1,t, . . . , xk,t]′ is a k-
dimensional vector, the natural extension is the following multiplicative vector autoregressive moving
average VARMA(P)s(p)(q)(Q)s model,

ΦP(Bs)ϕp(B)xt = θq(B)ΘQ(Bs)at, (5.8)

where

ΦP(Bs) = I −Φ1Bs − · · · −ΦPBPs,

ϕp(B) = I − ϕ1B − · · · − ϕpBp,

θq(B) = I − θ1B − · · · − θqBq,

ΘQ(Bs) = I −Θ1Bs − · · · −ΘQBQs,

are matrix polynomials. The matrix I is the k-dimensional identity matrix, the Φs, ϕs, θs, and Θs
are k × k parameter matrices, and at is a vector Gaussian white noise process with mean vector 0 and
E(ata′t) = Ω.

Note that as expected, the vector model reduces to the univariate model when k = 1. Moreover, in
such a case, the ARMA(P)s(p)(q)(Q)s model can also be written as the following ARMA(p)(P)s(Q)s(q)
model

ϕp(B)ΦP(Bs)xt = ΘQ(Bs)θq(B)at. (5.9)

As a result, a multiplicative seasonal ARMA model is also traditionally written in the form of ARMA
(P)s(p)(q)(Q)s. This traditional representation has been adopted by many researchers for both uni-
variate and vector time series.

When k > 1 and xt is a vector process, can we really extend the above operation and write the
VARMA(P)s(p)(q)(Q)s model,ΦP(Bs)ϕp(B)xt = θq(B)ΘQ(Bs)at, as the following VARMA(p)(P)s(Q)s

(q) model?

ϕp(B)ΦP(Bs)xt = ΘQ(Bs)θq(B)at. (5.10)
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Let us consider two simple seemingly equivalent bivariate VAR(1)4(1) and VAR(1)(1)4 representa-
tions with the following parameters

Φ =

[
.5 .5
−.25 .25

]
,

ϕ =

[
.9 .5
.7 −.5

]
,

and the associated noise at is a vector Gaussian white noise process with mean zero and covariance
matrix Ω. For the VAR(1)4(1) representation,(

I −ΦB4
)

(I − ϕB)xt = at,

xn+1 = ϕxn +Φxn−3 −Φϕxn−4 + an+1,[
x̂1,n(1)
x̂2,n(1)

]
=

[
.9 .5
.7 −.5

] [
x1,n
x2,n

]
+

[
.5 .5
−.25 .25

] [
x1,(n−3)
x2,(n−3)

]
−

[
.5 .5
−.25 .25

] [
.9 .5
.7 −.5

] [
x1,(n−4)
x2,(n−4)

]
=

[
.9 .5
.7 −.5

] [
x1,n
x2,n

]
+

[
.5 .5
−.25 .25

] [
x1,(n−3)
x2,(n−3)

]
−

[
.8 0
−.05 −.25

] [
x1,(n−4)
x2,(n−4)

]
.

For the VAR(1)(1)4 representation,

(I − ϕB)(I −ΦB4)xt = at,

xn+1 = ϕxn +Φxn−3 − ϕΦxn−4 + an+1,[
x̂1,n(1)
x̂2,n(1)

]
=

[
.9 .5
.7 −.5

] [
x1,n
x2,n

]
+

[
.5 .5
−.25 .25

] [
x1,(n−3)
x2,(n−3)

]
−

[
.9 .5
.7 −.5

] [
.5 .5
−.25 .25

] [
x1,(n−4)
x2,(n−4)

]
=

[
.9 .5
.7 −.5

] [
x1,n
x2,n

]
+

[
.5 .5
−.25 .25

] [
x1,(n−3)
x2,(n−3)

]
−

[
.325 .575
.475 .225

] [
x1,(n−4)
x2,(n−4)

]
.

The different implications between the two seemingly equivalent representations are clear and cannot
be ignored especially when a policy related decision is to be made. Please see Yozgatligil and Wei
(2009) for details.

6. Contemporal Aggregation

In addition to temporal aggregation discussed in earlier sections, there is another commonly used
aggregation. For example, the total money supply is the aggregate of demand deposits and currency
in circulation. The total housing start is the aggregate of housing starts in the north east, north central,
south, and west regions, which again are the subaggregates of housing starts in different states. The
total sales of a company is the aggregate of the sales achieved by all of its branches throughout the
country or countries.

Let z1,t, z2,t, . . . , zm,t be the m component time series and Yt =
∑m

i=1 zi,t be the corresponding series
of aggregates. Suppose we are interested in forecasting the future aggregate Yt+l for some l, based on
the knowledge of the available time series up to the time t. Clearly, such forecasts can be obtained
through the following three methods.

Method 1: based on a model using the aggregate series Yt and its l-step ahead forecast, Ŷt(l).
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Method 2: based on individual component models using the non-aggregate series zi,t and the sum of
the forecasts from all component models, i.e., ˆ̂Yt(l) =

∑m
i=1 ẑi,t(l).

Method 3: based on a joint multiple time series model and the forecast from the joint multiple model,
ˆ̂̂
Yt(l).

Question: what are the relative efficiencies among the three methods in terms of the minimum mean
square error forecast? The answers are given below.

(1) E[Yt+l −
ˆ̂̂
Yt(l)]2 ≤ E[Yt+l − Ŷt(l)]2; E[Yt+l −

ˆ̂̂
Yt(l)]2 ≤ E[Yt+l − ˆ̂Yt(l)]2; and equality holds when

z1,t, z2,t, . . . , zm,t are orthogonal to each other.

(2) The comparison between methods 1 and 2 depends on the model structure; there is no definite
winner between methods 1 and 2.

The answer (2) above could be surprising to some people because aggregation normally will cause
information loss. For the proof, we refer readers to Wei and Abraham (1981).

Next, let us consider the m-dimensional models related to both time and space where we write it
as

Zt =


Z1,t
Z2,t
...

Zm,t

 =


Time series for space 1
Time series for space 2

...
Time series for space m

 . (6.1)

The commonly used model to describe (6.1) is the following space-time autoregressive moving aver-
age (STARMA(p, q)) model,

Zt =

p∑
k=1

rk∑
l=0

ϕk,lW(l)Zt−k + at −
q∑

k=1

τk∑
l=0

θk,lW(l)at−k, (6.2)

where W(l) =
⌊
w(l)

i, j

⌋
are m × m the spatial weight matrices,

∑m
j=1 w(l)

i, j = 1,

w(l)
i, j =

(0, 1], if location j is the lth order neighbor of i,
0, otherwise,

and ϕk,l and θk,l are autoregressive and moving average parameters at time lag k and space lag l,
respectively. p is the autoregressive order, q is the moving average order, rk is the spatial order for the
kth autoregressive term, and τk is the spatial order for the kth moving average term. The STARMA(p,
q) model becomes a space-time autoregressive (STAR(p)) model when q = 0. It becomes a space-time
moving average (STMA(q)) model when p = 0.

For these STARMA(p, q) models, it will be interesting to study the effect of temporal aggregation,
the effect of contemporal aggregation, and more generally, the combining effects of both temporal and
contemporal aggregation. Because of the time limitation of this presentation, we refer readers to Arbia
et al. (2010), Giacomini and Granger (2004), and Hendry and Hubrich (2011) among others on some
of these issues.
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