• Title/Summary/Keyword: time-delayed controller

Search Result 97, Processing Time 0.087 seconds

Compensation of the Uncertain Time Delays Using a Predictive Controller (예측제어기를 이용한 불확실한 시간지연 보상)

  • 허화라;이장명
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.13-16
    • /
    • 2002
  • In this paper, we newly propose a predictor model which is a method to overcome the time-varying delay in a system and we verify that the predictor model is well suited for the time-delayed system and improves the stability a lot through the experiments. The proposed predict compensator compensates uncertain time delays and minimizes variance of system performance. Therefore it is suitable for the control of uncertain systems and nonlinear systems that are difficult to be modeled. The simulation conditions are set for the cases of various input time delays and simulations are applied for the 2-axis robot arms which are drawing a circle on the plane. Conclusively, the proposed predict compensator represents stable properties regardless of the time delay. As a future research, we suggest to develope a robust control algorithm to compensate the random time delay which occurs in the tole-operated systems.

  • PDF

H Control for Discrete-Time Fuzzy Markovian Jump Systems with State and Input Time Delays (상태 및 입력 시간지연을 갖는 이산 퍼지 마코비안 점프 시스템의 H 제어)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • This paper presents the method for $H_{\infty}$ fuzzy controller design of discrete-time fuzzy Markovian jump systems with state and input time delays. The Takagi and Sugeno fuzzy model is employed to represent a delayed nonlinear system that possesses Markovian jump parameters. A stochastic mode dependent Lyapunov function is employed to analyze the stability and $H_{\infty}$ disturbance attenuation performance of the fuzzy Markovian jump systems with state and input time delays. A sufficient condition for the existence of fuzzy $H_{\infty}$ controller is given in terms of matrix inequalities. Also numerical example is presented to illustrate the efficiency of the proposed design method.

Tight Path Following PID Controller for a Vehicle with Time Delay (비행체 시간지연을 고려한 정밀경로추종 PID 제어기법)

  • Rhee, Ihn-Seok;Park, Sang-Hyuk;Lee, Kyoung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.618-626
    • /
    • 2011
  • In order to complete missions in a complicated terrain or highly dangerous area, an unmanned aerial vehicle(UAV) needs a fine controller to precisely follow the desired path. A PID controller used for the path following feeds forward path curvature information to the control input to improve the path following performance. High gain for PID controller is necessary to follow path tightly. However the high gain could cause instability or performance degradation when the vehicle has slow dynamics. We present PID controller design method which considers response delay of vehicle as well as path curvature. In order to obtain path curvature the desired path is described as a 3rd order polynomial by applying cubic spline interpolation. We apply the proposed controller to the path following of a UAV which is operated in high altitude and has very slow lateral dynamics. The lateral dynamics are modelled as a first order delayed system in the controller design. Nonlinear simulation shows the UAV with proposed controller follows an arbitrary path very tightly.

Time-Discretization of Non-Affine Nonlinear System with Delayed Input Using Taylor-Series

  • Park, Ji-Hyang;Chong, Kil-To;Kazantzis, Nikolaos;Parlos, Alexander G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1297-1305
    • /
    • 2004
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.

Design and Verification of PCI 2.2 Target Controller to support Prefetch Request (프리페치 요구를 지원하는 PCI 2.2 타겟 컨트롤러 설계 및 검증)

  • Hyun Eugin;Seong Kwang-Su
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.523-530
    • /
    • 2005
  • When a PCI 2.2 bus master requests data using Memory Read command, a target device may hold PCI bus without data to be transferred for long time because a target device needs time to prepare data infernally. Because the usage efficiency of the PCI bus and the data transfer efficiency are decreased due to this situation, the PCI specification recommends to use the Delayed Transaction mechanism to improve the system performance. But the mechanism cann't fully improve performance because a target device doesn't know the exact size of prefetched data. In the previous work, we propose a new method called Prefetch Request when a bus master intends to read data from the target device. In this paper, we design PCI 2.2 controller and local device that support the proposed method. The designed PCI 2.2 controller has simple local interface and it is used to convert the PCI protocol into the local protocol. So the typical users, who don't know the PCI protocol, can easily design the PCI target device using the proposed PCI controller. We propose the basic behavioral verification, hardware design verification, and random test verification to verify the designed hardware. We also build the test bench and define assembler instructions. And we propose random testing environment, which consist of reference model, random generator ,and compare engine, to efficiently verify corner case. This verification environment is excellent to find error which is not detected by general test vector. Also, the simulation under the proposed test environment shows that the proposed method has the higher data transfer efficiency than the Delayed Transaction about $9\%$.

Auto-tuning of PID/PIDA Controllers based on Step-response (스텝응답에 기반한 PID/PIDA 제어기의 자동동조)

  • Ahn, Kyung-Pil;Lee, Jun-Sung;Lim, Jae-Sik;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.

Intelligent Digital Redesign for Continuous-Time TS Fuzzy Systems with Input Delay (입력 지연 TS 퍼지 시스템의 지능형 디지털 재설계)

  • Lee, Ho-Jae;Park, Jin-Bae;Cha, Dae-Beum;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2117-2119
    • /
    • 2001
  • This paper proposes a novel intelligent digital redesign technique for a class of nonlinear systems represented by input-delayed Takagi-Sugeno (TS) fuzzy systems. The digitally redesigned controller can show good performance provided that the analog controller is well-designed. The developed digital redesign technique is based on the 'state-matching', so the control performance is guaranteed as well as the stability of the system. An simulation example is included to ensure the effectiveness of the proposed method.

  • PDF

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Output feedback $H^{\inty}$ Control for Linear Systems with Time-varying Delayed State

  • Jeung, Eun-Tae;Oh, Do-Chang;Kim, Jong-Hae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.48-51
    • /
    • 1996
  • This note considers the $H^{\infty}$ controller design problem for linear systems with time-varying delays in states. We obtain sufficient conditions for the existence of k-th order $H^{\infty}$ controllers in terms of three linear matrix ineualities(LMIs). These sufficient conditions are dependent on the maximum value of the time derivative of time-varying delay. Furthermore, we briefly explain how to construct such controllers from the positive definite solutions of their LMIs and give an example.e.

  • PDF

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.