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Abstract
A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-
Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state
and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-
loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is
formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the

proposed design method.
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1. Introduction

Guaranteed cost control (GCC) for linear systems with
parameter uncertainty has been an active area in control system
community for several decades [1-3]. In particular, GCC for
discrete-time uncertain systems has attracted great attention [4,
5]. Recently, the GCC scheme has been extended to uncertain
nonlinear discrete-time systems [6-7]. For example, the problem
of guaranteed cost analysis and control for a class of nonlinear
discrete-time systems is discussed in [6] and the nonlinear
discrete-time uncertain systems with state delay is considered
using linear matrix inequality (LMI) techniques [7]. Because of
the existence of time delays and the complexity of the nonlinear
systems, there still remain some difficulties in designing of
guaranteed cost control for the general nonlinear systems with
time delays.

One approach to deal with these difficulties is the Takagi-
Sugeno (T-S) fuzzy approach [8]. Studies have shown that T-S
fuzzy model can be used to approximate global behaviors of
some kinds of highly complex nonlinear systems [9]. T-S
model-based controller can combine the merits of both fuzzy
controller and conventional linear theory. Furthermore, the
controller guarantees stability in the sense of Lyapunov and
control performance theoretically [9-11]. Based on the T-S
model, many significant results have been proposed for the
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discrete time-delay systems [12, 13]. Therefore, T-S model-
based technique is an effective scheme to deal with the GCC
problem of nonlinear discrete time-delay systems.

Usually, the synthesized controllers are robust with respect to
system uncertainty. However, the robustness with respect to
controller uncertainty is not considered. The controller
robustness issue with respect to controller uncertainty has been
presented by Keel & Bhattacharyya [14]. This motivates the so-
called non-fragile control in which a controller must tolerate a
certain degree of controller uncertainty as well as system
uncertainty. This controller fragility issue has since attracted
some research interest [15-17]. In [16], the problem of non-
fragile GCC state feedback design for discrete-time uncertain
linear systems is studied by using LMI techniques. And in [17],
a non-fragile linear quadratic fuzzy control problem for a class
of nonlinear time-delayed descriptor systems is discussed.

To our knowledge, the design and analysis of non-fragile
GCC by using T-S model approach for nonlinear discrete time-
delay systems remains untouched. In this paper, we study the
design and analysis of non-fragile GCC state-feedback for a
class of discrete time-delay nonlinear uncertain systems using T-
S fuzzy model.

The paper is organized as follows: section 2 discusses the T-S
fuzzy systems and the problem under consideration. Section 3
presents conditions for the existence of the non-fragile
guaranteed cost controllers and design methods of such
controllers. A numerical example is given to illustrate the
proposed design methods in Section 4, which is followed by

conclusions in Section 5.
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2. Problem Statement

Consider a class of uncertain discrete time-delay nonlinear
systems described by the following T-S fuzzy model

x(k+1) = 3 )4 + A )x(k)
(A, + Ay )x(k — d) + (B, + ABJu(k)}

(D

where z(k)=[z,(k)---z,(k)]" is the premise variable vector, d
>0 is the time delay, x(k)e R" is the state vector, u(k)< R"
is the control input vector, / is the number of model rules.
h(z(k))=0 is the normalized weight for each rule and
satisfying

- XhGk)=1 )

A, A, €R™ and B, e€R™ are known constant matrices,
AA4,,A4, € R™", and AB, € R™”
parametric uncertainties having the following structure:

represent the time-varying

(A4, Ad, AB|=DF(k)E, E; E,] 3)

where D, E,E,, and E,, are known real constant matrices
of appropriate dimensions, and F(k) is an unknown matrix
function with Lebesgue-measurable elements and satisfying
FT(F(k)<I .

The cost function associated with this system is

J:i(xT(k)Qx(kHuT(k)Ru(k)) )

where O>0 and R >0 are given weighting matrices.

Based on the parallel distributed compensation scheme [10],
the following non-fragile fuzzy controller is proposed to deal
with the GCC problem for system (1):

u(k) =D h(z(XK, + AK)x(k) (5)

where K. € R™" is the local nominal feedback gain of the
controller, AK, € R™" denotes the norm-bounded additive form
uncertainty in controller and has the following structure:

AK, = GH(K)E, (6)

where G , E,
appropriate dimensions, and H(k) is an unknown matrix
function with Lebesgue-measurable elements and satisfying
H'"(H((k)<I.

Substituting (5) into (1), the closed-loop system can be
written as (7),

are known real constant matrices with
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x(k +1)= X Y BN, () (4, + A4

+(B, + AB)(K ; + AK ; ))x(k)

+(Ay + Ad,)x(k - d)} (7
= (A +Ad)x(k) + (B + AB)K + AK)x(k)

+(Aa + Ada)x(k - d)

where A= ihi (z(k) 4, Ad= ih,. (z(k))A,, B = ih (z(k))B,
A= 3 h(2(k)A4, Ao =Y R ()M,
AB = ih,. (z(k))AB,

K=Y h(z(k)K,, AK = ihj (z(k)AK, (8)

i
j

Lemma 1 : Given matrices Y , H , E of appropriate dimensions
and with ¥ symmetric, then for all F satisfying FTF <]
and Y+ HFE+E"FTH" <0, if and only if there exists ¢ >0

such that Y+ ¢HH' + & 'E"E <0[4).

3. Main Results

In this section, sufficient condition that guarantees the
asymptotical stability of the closed-loop system, as well as the
smaller of closed-loop cost function value than a specified upper
bound, is presented in Theorem 1. The design method of such
controller in terms of the feasible solutions to the LMIs is
discussed in Theorem 2.

Theorem 1: Given the controller gain matrix K, , (5) i1s a
guaranteed cost fuzzy controller, if there exist symmetric
positive-definite matrices P , S , an_d scalar £,>0, ¢£,>0,
such that LMI (9) holds,

Fal

- D + % *
0 - *
_— —_ — A A — —T
A+BKP"' AsP -P+&DD" +2,BGG' B
P 0 0
—_— r T
KP 0 &,GG' B
- = = — A -— ~T
E.+EsKP EJP &,E,GG"B
i Ekﬁ 0 0
* * * * |
* * * *
% * * *
_Q-l % % * <0 (9)
0 -R'+&GG" * *
0  &EGG  -el+eEGG'E, *
0 0 0 ~&1
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where K is defined in (8) and
_ { - !
E.= Zhg(z(k))Ea;‘a Ey= th (Z(k))Eb;

Eq= X h(z(k)E,, Ex = > (z(K)E, (10)

Moreover, cost function (4) satisfies the following upper
bound:

0 . d n - A
J<T = (X" (OPx(0) + D x" (-)P'SP'x(—i)) (11)
k=1 i
Proof : Define the following Lyapunov-krasovskii function
d
V (k)= x"(k)Px(k)+ D x" (k—i)Sx(k —i)
i=1

where P and § are positive-definite matrices. It follows
from (7) that

AV () =V (k+1) =V (k)

_ [ x(k) ]T {A;”PAC —P+S§

ATPA, x(k)
x(k—d A} PA, ATPA -S| x(k-d

A =A+AA+(B+AB)K

where

Adc = Zd + Agd
K=K+AK (12)

Suppose that with given weighting matrices Q>0 and
R > 0, (13) holds for all admissible uncertainties

A'P4 -P+S K'RK  A'PA
¢ o . + Q + . c de < 0 (13)
A" PA. A'P4 -S
Then, we have
AV (k) < =x" (k)(Q + K" RKx(k) <0 (14)

Thus, it follows from Lyapunov stability theory that the
closed-loop system (7) is asymptotically stable. Summing both
sides of (14) from 0 to infinity and using the system stability, it
is €asy to show that the cost function satisfies (11).

By Schur complement, (13) is equivalent to

-

_P+S+Q+K'RK * %
0 -5 * <0

] A A, —P|

By (3), the above inequality can be rewritten as

[ P+S+Q+K'RK *  * 0
0 s * |+|o F(k)[Ea +EK Eq o}
| A+BK As -P| |D

1_(Ea + EbK)T—‘

—T
+ Ea
0

FT(k)[O 0 DTJ <0

In light of Lemma 1 and using the Schur complement, the
above inequality is true for all admissible uncertain matrices
F(k) if and only if there exists a scalar &, > 0 such that

[ _P+ S * * % * *
0 —S * * * %
A+BK A4 -P'+eDD" * * %
A+ BK d & ) <0 (15)
I 0 0 ~( * *
K 0 0 0 —R™! *
_Ea + EbK Ed 0 0 0 —6‘11_

By (6) and (12), (15) 1s equivalent to (16).

_P+S * * * * *
O __,S E *k sk %
A+BK A4 -P'4gDD" * * *
I 0 0 -Qt *
K 0 0 0 -R' =*
E.+EK Ea 0 0 0 -—gl]
C Q|
0
BG —
+ H(k)[Ek 00 0 0 o]
G
E\G |
Er |
0
; g HT(k)[O 0 G'B 0 G GTE§}<O (16)
0
_0_

Using Lemma 1 and Schur complement, (16) is true for all
admissible uncertain matrices /f (k) if and only if there exists
a scalar &, >0 such that following matrix mequality holds:

—-P+S * *
0 ) *
- —— = — —T
A+BK As -P'+DD" +£,BGG"'B
I 0 0
—_— T_T
K 0 £,GG" B
— = - = — —r
E.+EsK  Ea £, E,GG" B
. E 0 0
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% % * % |
* ® * *
* * * %k
-0 * * *l<o  aD
0 -R'+¢GG * * |
0  £EGGT -el+eEGGE, *
0 0 0 &1 |
Pre- and post-multiplying both sides of (17) by
diag{—P™,—P",I,1,I,I} , and denoting P=P"' , and

S=P'SP™ | it is clear that (17) i1s equivalent to the LMI
condition (9). Thus, (13) is fulfilled, which implies that (14) and
(11) hold.c

Remark 1 : In Theorem 1, an LMI condition has been given
which guarantees that the closed-loop system is asymptotically
stable and guaranteed cost performance 1s achieved. However,
(9) 1s not the form of IMI for K, i=1,2---/ before the
determination of these control gains. Therefore, Theorem 1 can
not be used directly to design a controller. In the sequel, the
controller design problem will be transformed to a feasibility
problem of a set of LMISs that can be solved easily.

Theorem 2 : non-fragile fuzzy controller (5) is a guaranteed
cost fuzzy non-fragile controller for system (1), if there exist
symmetric positive-definite matrices PeR™ ) SeR™ , and

MAR

real matrix W.eR™, scalar & >0,¢&,>0, such that the

following LMIs holds:
U, <0, i=12-,1 (18)
U,+U,<0, 1<i<j<I (19)
where Uj; is given by (20).
| P+ * * *
_S * %
AP+BW, AP  -P *
P 0 0 -0
Us = w, 0 0 0
E,P+EW, E,P 0 0
E,P 0 0 0
0 0 &G'BT 0
] 0 0 g D" 0
$ * % * * |
* * * * *
* * * * *
* * * * *
—R! * * * * (20)
0 el ** |
0 0 -g,l ¥ *
G" &G'E, 0 —gl *
0 0 0 0 —gl]
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Furthermore, the non-fragile fuzzy GCC can be given by

K =Wp" (21)
Proof :_From Theorem 1, matrix inequality (9) can be rewritten
as o
Q, +Q;Q,Q,<0 (22)
where
_ -P+S * o * s * ]
0 -S * * * % *
A+BKP" AP -P o+ x  x &
Q= P o o - * * ¥
— -1
KP o o O & * *
_ - . — . 0 —e] *
E.+EsKP EP 0 %
— . 0 0 0 -l
. EWP 0 0 B
|:82] 0 }
Q, =
0 &l
T ol T =
o |0 0 GB 0 G GEz O
"loo D 0 0 0 0
Using the Schur complement, (22) is equivalent to
T .
[Ql Q3_1} <0 (23)
Q, Q)
Pre- and post-multiplying both sides of (23) by

diag{l,1,1,1,1,1,1,&,1,£1} , and denoting, W =KP , yield the
following matrix inequality

—P+S * * *
0 _S * *
AP+BW AP -P *
P 0 0o -0
w 0 0 0
| E.P+EsW E4P 0 0
EiP 0 0 0
0 0 &G'B 0
0 0 g D" 0
% * % % *
* * * * s
_R! * * * *
0 —&d * * *
0 0 =5l F <0 (24)
eGT £G'En 0 —gl *
0 0 0 0 -gl
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The above inequality is equivalent to

[ i /

2 X (2 (kDh, (W, = X h (kDA (U,

Pl %)
+ZZhI. (z(kNh, (z()U, +U ;) <0

Obviously, (18) and (19) are the sufficient conditions for (25).
Thus, if (18) and (19) hold, (9) can be obtained. Thus, (5) is a
guaranteed cost fuzzy controller for system (1). O
Remark 2 : In conditions (18) and (19), P,S,W,,&l &,
are the matrix variables, and 4, B,, 4,, O, R, D, G,
E,;, E,, E,;, E, are the known real constant matrices. Thus,
Theorem 2 presents an LMI-based method for the non-fragile
GCC design. It is a feasibility problem of LMIs (18)-(19), which
can be solved by using Matlab LMI Toolbox.

4. A numerical Example

To illustrate the effectiveness of the proposed method, a
number example is presented and compared with a conventional
GCC approach presented in [18] in which a backing-up control
of the computer-simulated truck-trailer model is used.

The model is formulated as

x(k+1)=(1— "%)xl (k) +0.1x, (k — d) + "T‘u(k) (26)
xy(k +1) = x, (k) + "thl k) 27)
X, (k +1) = Aa, x, (k) + Aay,x, (k)
. vt (28)
+x, (k) + vtsin(x, (k) + —x,(k))
2L
where
Aa,, = a%sin(k)
and
Aa,, = asin(k)
is the uncertainty. Let
vt
z(k) = x,(k)+ szl(k)
and the membership functions as
[sin(z(k)) —m - z(k) 20 %0 |
hzk)=y z(k)-(1-m) (29)
15 Z(k) # 0

2(k) — sin(z(k))
z(k)-(1—m)
0, 2(k) £ 0

. z2(k)#0

hy(z(k)) = (30)

Thus the uncertain nonlinear system (26)-(28) can be
represented by the T-S fuzzy model (1) with /=2, n=3 and

-2 0 o -2 0 o
L L
1
4= 2 1 o0La=l L 1 ol
L
Vir: my't’
vt 1 mvt 1
| 2L | 2L |
_ _ hy
0.1 0 0 ]
Ady=A,=/0 0 0|,B=B=0| D=[0 0 a]
0 0 0] 0

Set the same model parameters from [18] as /=2.8,L =35.5,
v=-10, t=20,d=1, m=(0.01/7),a=0.0023, and

(01 0 0]
O0=0 01 0| R=1
0 0 0.1]

For the controller uncertainty, we set

G =25, E, =E,, =[0.035 0.035 0.0010]

By Theorem 2, feedback gains K,,i=1,2 can be obtain as
follows

K, =[1.8924 -1.0799 0.0918]
K,=[1.8584 —0.8976 0.0915]

The corresponding upper bound of cost function is given as
J =59.24.

The same problem is solved by the method in [18] without
considering the uncertainties in the controller and the controller
gain matrices are obtained as

K, =[0.9290 —0.0915 0.0016]
K,=[0.8795 -0.0643 0.0015 |

The corresponding upper bound of cost function 1s given as

J =13.93.
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Fig.1 Trajectories of the state variables of the truck-trailer

system for non-fragile fuzzy GCC design
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Fig. 2 Trajectories of the state variables of the truck-trailer
system for conventional GCC design

The proposed non-fragile GCC method and conventional
GCC method [18] are compared under initial state
¥=D=[0 0 0] and x(0)=[-0.57 0.75z7 -10] . The
control results are shown in Fig. 1 and Fig. 2, respectively. From
these results, it can be seen that the closed-loop system becomes
unstable in the conventional GCC design which does not take
into account the uncertainties in the controller. On the contrary,
the closed-loop response under the controller from the non-
fragile GCC design is stable. It should be noted that the upper
bound of cost function value for the non-fragile GCC is larger
than that of the conventional GCC design. Therefore, there
exists a trade-off between controller non-fragility and the
guaranteed cost performance.

S. Conclusion
Based on the T-S fuzzy model, the non-fragile control scheme
is extended to nonlinear systems and the non-fragile GCC

problem for a class of nonlinear discrete-time uncertain systems
with state delay is studied. The stability analysis and the design
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method of the non-fragile guaranteed cost controllers have been
proposed in terms of the feasible solutions to LMIs. The
numerical simulation results of a truck-trailer demonstrate that
the proposed fuzzy non-fragile controller can tolerate a certain
degree of controller uncertainty as well as system uncertainty.
Furthermore the simulation results also show that there exists a
controller non-fragility and

trade-off between system

performance.
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