• Title/Summary/Keyword: time delays

Search Result 879, Processing Time 0.04 seconds

Robust Stability Bounds for Discrete-Time Regulators with Computation Delays (연산지연을 가진 이산시간 레규레이터에 대한 강인한 안정성 유계)

  • 배종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.174-180
    • /
    • 1998
  • Robust stability of discrete-time regulators which utilize state predictors to compensate computation delays is considered. Novel expressions for the return difference matrices and the complementary sensitivity matrices at the input and the output of the regulator are found to obtain simple bounds for unstructured perturbations. Robust stability for pertubations of the system matrix and /or the gain matrix is also considered. under certain restriction on the nominal system simple bounds for the pertubations are obtained directly from the characteristic equation. It is shown that as far as the effect of the computation delays concerns these bounds have explicit relation to those for the unstructured pertubations.

  • PDF

Generalized optimal active control algorithm with weighting matrix configuration, stability and time-delay

  • Cheng, Franklin Y.;Tian, Peter
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.119-135
    • /
    • 1993
  • The paper presents a generalized optimal active control algorithm for earthquake-resistant structures. The study included the weighting matrix configuration, stability, and time-delays for achieving control effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investigated for which the stability regions are determined. A simplified method for reducing the influence of time-delay on dynamic response is proposed. Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix can be flexibly selected and adjusted at any time during the operation of the control system. The examples also show that the weighting matrix based on pole placement approach is superior to other weighting matrix configurations for its self-adjustable control effectiveness. Using the time-delay correction method can significantly reduce the influence of time-delays on both structural response and required control force.

Delays and its Analysis: Indian Residential Construction Projects

  • Metha, Rakesh L.;Gaikwad, Suraj V.
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.20-28
    • /
    • 2017
  • In almost every construction project, delay is an inevitable yet controllable phenomenon. The Indian construction industry encounters an enormous amount of delays in projects. Delay affects both time and money in the forms of schedule and cost overruns, respectively. Due to impressive and dynamic growth in the Indian construction sector, planned efforts are essential to limit these undesirable delays. On account of the surge in the rate of residential building construction, the task of identification and analysis of the delays in residential projects in India has been attempted by the authors. A questionnaire survey was conducted involving 100 stakeholders. Further analysis included an Importance Index to rank the identified delays, Principle Component Analysis for advanced statistical analysis, and Correlation Analysis to check the extent of agreement amongst stakeholders. Conclusions drawn with reference to the analysed data eventually reflected finance-related issues, as well as labour related problems as the dominating causes of delays. The aim of the research is to provide insight to the construction stakeholders and researchers, on an international scale, with the obtained results.

A study on robust adaptive controller for processes with variable time-delays (시변 지연 시간을 갖는 프로세스의 로버스트 적응제어기에 관한 연구)

  • 강문식;전종암;이상배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.185-189
    • /
    • 1987
  • The controller with robustness described in this paper is designed for processes with variable time-delays. This adaptive mechanism includes servo and stabilizing compensators. In the proposed multivariable controller. knowledge of the system time-delay is not required.

  • PDF

GLOBAL ASYMPTOTIC STABILITY FOR A DIFFUSION LOTKA-VOLTERRA COMPETITION SYSTEM WITH TIME DELAYS

  • Zhang, Jia-Fang;Zhang, Ping-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1255-1262
    • /
    • 2012
  • A type of delayed Lotka-Volterra competition reaction-diffusion system is considered. By constructing a new Lyapunov function, we prove that the unique positive steady-state solution is globally asymptotically stable when interspecies competition is weaker than intraspecies competition. Moreover, we show that the stability property does not depend on the diffusion coefficients and time delays.

Networked Control System Design Accounting for Time-Delays with Application to Inverted Pendulum

  • Park, Byung-In;Yoo, Ho-Jun;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1470-1473
    • /
    • 2003
  • In this paper the networked control systems (NCS) problem is discussed where plants and controllers are distributed and interconnected by a common network. NCS is designed with LQ regulator and applied to an inverted pendulum accounting for the multiple time delays. We are to deals with a networked control system with a single controller, multiple sensors and multiple actuators. Since these parts are distributed, they are interconnected by communication networks. An NCS with LQ regulator is designed and applied to an inverted pendulum as a benchmark plant to check its performance under time delays induced by the network. Network induced delays are composed of two parts. One is the delay from controller to plant, and another is from plant to controller. They are assumed to be constant in this paper, and the plant and controller are discretized. To apply the LQ regulator the NCS model is transformed to a standard model with delayed states as state variable. And real network induced delay is measuring in TCP/IP network assuming that two delays are constant.

  • PDF

H Control of Networked Control Systems with Two Additive Time-varying Delays (시변 시간지연을 갖는 네트워크 제어 시스템의 H 제어)

  • Kim, Jae Man;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • This paper presents a stabilization method for NCS (Networked Control Systems) with two additive time-varying delays. Each time delay component between the plant and the controller has different characteristics depending on communication network, and has the upper and lower bounds. The time delay occurring from the controller to the plant has an effect on the time delay occurring from the plant to the controller, and the relationship between two delays is taken into account on the stability analysis. Based on the two additive delay components and the bound conditions, the appropriate Lyapunov-Krasovskii functional and the LMI (Linear Matrix Inequality) method derive the stability condition and the $H_{\infty}$ norm constraint for time-varying delayed NCS. Simulation results are finally given to demonstrate the effectiveness of the proposed method.

Robust $H^{\infty}$ control for parameter uncertain time-varying systems with time-varying delays in state and control input (파라미터 불확실성 시변 시간지연 시스템에 대한 견실 $H^{\infty}$ 제어)

  • 김기태;김종해;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.113-116
    • /
    • 1997
  • In this paper, we present a robust $H^{\infty}$ controller design method for parameter uncertain time-varying systems with disturbance and that have time-varying delays in both state and control. It is found that the problem shares the same formulation with the $H^{\infty}$ control problem for systems without uncertainty. Through a certain differential Riccati inequality approach, a class of stabilizing continuous controller is proposed. For parameter uncertainties, disturbance and time varying delays, proposed controllers the plant and guarantee an $H^{\infty}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Finally a numerical example is given to demonstrate the validity of the results.ts.

  • PDF

Modeling of a Continuous-Time System with Time-delay

  • Park, Jong-Jin;Choi, Guy-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Control Theory for continuous-time system has been well developed. Due to the development of computer technology, digital control scheme are employed in many areas. When delays are in control systems, it is hard to control the system efficiently. Delays by controller-to-actuator and sensor-to-controller deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for control systems with multiple state, input and output delays and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative examples are given to demonstrate the effectiveness of the developed method.

Compensation of the Uncertain Time Delays Using a Predictive Controller (예측제어기를 이용한 불확실한 시간지연 보상)

  • 허화라;이장명
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.13-16
    • /
    • 2002
  • In this paper, we newly propose a predictor model which is a method to overcome the time-varying delay in a system and we verify that the predictor model is well suited for the time-delayed system and improves the stability a lot through the experiments. The proposed predict compensator compensates uncertain time delays and minimizes variance of system performance. Therefore it is suitable for the control of uncertain systems and nonlinear systems that are difficult to be modeled. The simulation conditions are set for the cases of various input time delays and simulations are applied for the 2-axis robot arms which are drawing a circle on the plane. Conclusively, the proposed predict compensator represents stable properties regardless of the time delay. As a future research, we suggest to develope a robust control algorithm to compensate the random time delay which occurs in the tole-operated systems.

  • PDF