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GLOBAL ASYMPTOTIC STABILITY FOR A DIFFUSION

LOTKA-VOLTERRA COMPETITION SYSTEM

WITH TIME DELAYS

Jia-Fang Zhang and Ping-An Zhang

Abstract. A type of delayed Lotka-Volterra competition reaction-diffu-
sion system is considered. By constructing a new Lyapunov function, we

prove that the unique positive steady-state solution is globally asymp-

totically stable when interspecies competition is weaker than intraspecies
competition. Moreover, we show that the stability property does not

depend on the diffusion coefficients and time delays.

1. Introduction

In this paper we consider the following diffusion Lotka-Volterra competition
system with two time delays

∂u(t,x)
∂t = d14u(t, x) + r1u(t, x) [1− u(t, x)− av(t− τ1, x)] , x ∈ Ω, t > 0,

∂v(t,x)
∂t = d24v(t, x) + r2v(t, x) [1− bu(t− τ2, x)− v(t, x)] , x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t ≥ 0,

u(t, x) = φ(t, x) ≥ 0, v(t, x) = ψ(t, x) ≥ 0, (t, x) ∈ [−τ, 0]× Ω,

(1.1)

where the functions u(t, x) and v(t, x) stand for the two population densities;
For i = 1, 2, let di > 0, denote the diffusion coefficients of two species; ri > 0,
denote the intrinsic growth rates; a, b are competition coefficients between the
species; τi are competition delays; Ω is a bounded domain in Rn, with smooth
boundary ∂Ω; ν is the unit outward normal vector on the boundary of Ω. The
Neumann boundary condition implies that the two species have no flux across
the boundary and the parameter τ = τ1 + τ2.

As mentioned by Faria and Oliveira in [3], the time-delays in differential
equations arise naturally in mathematical models in biology, to account for
the maturation period of biological species, synaptic transmission time among
neurons, incubation time in epidemic models, and various other situations [5, 6].
For a detailed discussion of this subject we refer to [2, 8, 9, 14, 18, 21].
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Qualitative analysis of the systems like (1.1) has been investigated in many
literatures (see [1, 11, 15]). Our model is a simplified diffusion version of the
system discussed in [15, Chapter 5.7]. Similar to [15], the self-limitation or
crowding effect in (1.1) is represented by an instantaneous term. The compe-
tition of population u on v is measured by competition coefficient a with time
delay, and b has a similar meaning. In addition, the stability of constant steady
states of the system (1.1) with distributed delays are also considered by some
authors, see [4, 13].

Early stability discussion was always via the semigroup theory and the the-
ory of dynamical systems (see [10, 20] and the references therein). More re-
cently, the method of upper and lower solutions combined with their monotone
iterations has also been used. As pointed out in [11], the determination of the
precise asymptotic limit of the time-dependent solution is, in general, more
difficult especially when the system possesses multiple steady-state solutions.
Moreover, in our situation, the construction of proper upper and lower solutions
is very tough, and this motivates us to find an alternative method.

The main subject of this paper is to investigate the stability of the posi-
tive steady-state solution of system (1.1). By constructing a new Lyapunov
function and using Lyapunov’s second method, we prove that the positive con-
stant steady-state solution is globally asymptotically stable when interspecies
competition is weaker than intraspecies competition. We hope that this result
could provide another method in understanding the dynamics of the diffusion
Lotka-Volterra competition system with two time delays. The main result and
its proof are given in Section 2. Finally, in Section 3, we apply our results
to a model investigated by Pao [11] and give some discussions and numerical
simulations.

2. Global stability of positive constant steady-state

In this section, by using the Lypunov’s second method, we mainly inves-
tigate the global asymptotic stability of positive constant steady-state when
interspecies competition is weaker than intraspecies one (0 < a < 1, 0 < b < 1).
It is easy to see that when 1−a

1−ab > 0, 1−b
1−ab > 0, the system (1.1) has a unique

component positive constant steady-state solution (u∗, v∗), where

u∗ =
1− a
1− ab

, v∗ =
1− b
1− ab

.

The main theorem in this paper is the following:

Theorem 2.1. Suppose that 0 < a < 1, 0 < b < 1. Then the positive constant
steady-state solution (u∗, v∗) of (1.1) is globally asymptotically stable for all
nonnegative τ1, τ2, that is, (u∗, v∗) attracts every solution of (1.1).
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Proof. According to [19], there exists a continuous function g(x, t) on Ω×[0,∞)
such that (1.1) has the following form

∂u(t,x)
∂t = d14u(t, x) + r1u(t, x)g(x, t), x ∈ Ω, t > 0,

∂u
∂ν = 0, x ∈ ∂Ω, t > 0,
u(0, x) = u0(x) ≥ 0, x ∈ Ω.

From the maximum principle for scalar parabolic boundary value problems,
we have that u(t, x) ≡ 0 on [0,∞) × Ω if u0(x) ≡ 0 in Ω, and u(t, x) > 0 on
(0,∞)×Ω if u0(x) > 0 in Ω. Similarly, v(t, x) ≡ 0 on [0,∞)×Ω if v0(x) ≡ 0 in
Ω, and v(t, x) > 0 on (0,∞)×Ω if v0(x) 6≡ 0 in Ω. In addition, by Proposition
4.2 of Chapter 9 in Wu [20] or Martin [10], the mild solution of (1.1) exists, and
remains positive for all t > 0 if φ(0, x) > 0, ϕ(0, x) > 0 for x ∈ Ω. Therefore,
the solution (u(t, x), v(t, x)) is nonnegative.

Now, we define the following Lyapunov function

W (u, v) =

∫
Ω

{
1

r1

(
u− u∗ − u∗ ln

u

u∗

)
+

1

r2

(
v − v∗ − v∗ ln

v

v∗

)
+

1

2

∫ t

t−τ2
(u(θ)− u∗)

2
dθ +

1

2

∫ t

t−τ1
(v(θ)− v∗)

2
dθ

}
dx.(2.1)

It is easy to check that W (u, v) is nonnegative and W (u, v) = 0 if and only if
u = u∗, v = v∗.

Differentiating the Lyapunov function W (u, v) with respect to time t along
the solutions of the system (1.1), we get

dW (u, v)

dt
=

∫
Ω

{
u− u∗

r1u
ut +

1

2

[
(u− u∗)2 − (u(t− τ2)− u∗)2

]
+
v − v∗

r2v
vt +

1

2

[
(v − v∗)2 − (v(t− τ1)− v∗)2

]}
dx

=

∫
Ω

{
u− u∗

r1u
d14u− (u− u∗) [(u− u∗) + a(v(t− τ1)− v∗)]

+
1

2

[
(u− u∗)2 − (u(t− τ2)− u∗)2

]
+

1

2

[
(v − v∗)2 − (v(t− τ1)− v∗)2

]
+
v − v∗

r2v
d24v − (v − v∗) [(v − v∗) + b(u(t− τ2)− u∗)]

}
dx.

From the homogeneous Neumann condition and the Green’s first identity, we
get ∫

Ω

u− u∗

r1u
d14udx = −

∫
Ω

d1u
∗

r1u2
|∇u|2dx,

and ∫
Ω

v − v∗

r2v
d24vdx = −

∫
Ω

d2v
∗

r2v2
|∇v|2dx.
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Therefore

dW (u, v)

dt
=

∫
Ω

{
−d1u

∗

r1u2
|∇u|2 − 1

2
[(u− u∗) + a(v(t− τ1)− v∗)]

2

−d2v
∗

r2v2
|∇v|2 − 1

2
[(v − v∗) + b(u(t− τ2)− u∗)]

2

−1

2
(1− b2)(u(t− τ2)− u∗)2

−1

2
(1− a2)(v(t− τ1)− v∗)2

}
dx.

It is easy to see that 0 < a < 1 and 0 < b < 1 imply dW (u,v)
dt < 0.

In addition, using the comparison argument for parabolic problem, one can
easily see that 0 < u(t, x) ≤ U(t, x) for all (t, x) ∈ (0,∞) × Ω, where U is the
unique solution of

∂U(t,x)
∂t = d14U(t, x) + r1U(t, x)[1− U(t, x)], x ∈ Ω, t > 0,

∂u
∂ν = 0, x ∈ ∂Ω, t > 0,
u(0, x) = u0(x) ≥ 0, x ∈ Ω.

Then we can find a large T such that u(t, x) ≤ 1 + ε in [T,∞) × Ω for any
positive constant ε from the fact that u(t, x) ≤ U(t, x) and U(t, x) → 1 as
t → ∞. Moreover, v(t, x) has the same property. Therefore the solution
(u∗, v∗) is globally asymptotically stable. This completes the proof. �

3. Concluding remarks

Generally, it has been recognized that the introduction of the time delays
not only destabilizes the system but also could induce various oscillations and
periodic solutions (see [6, 20]). However, when the interspecies competition is
weaker than intraspecies one, which is more natural in biology and ecology,
the global asymptotic stability of the positive constant steady-state solution of
(1.1) is found by using Lyapunov’s second method in our work. This phenom-
enon implies that delays do not destabilize the system under the conditions
0 < a, b < 1. We would also like to mention that turing instability has been
proposed as a mechanism for pattern formation in numerous embryological
and ecological contexts (see [17]). While, under our conditions, the possible
instability phenomenon does not occur even with variable diffusion coefficients.
Moreover, the stability of constant steady states of the system (1.1) with dis-
tributed delays had also been considered by some authors (see [4]).

The results in the literature [16] show that changes of hunting delays for
system (1.1) without diffusions do not lead to the occurrence of Hopf bifurcation
when interspecies competition is weaker than intraspecies competition. Our
result here further indicates that the positive constant steady-state solution
(u∗, v∗) is globally asymptotically stable for any d1, d2, τ1 ≥ 0, τ2 ≥ 0, i.e.,
the positive constant steady-state solution cannot be destabilized by changing
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the diffusivity and time delays. The form of the Lyapunov function here is
motivated by [7, 12]. We notice that the result of Theorem 2.1 only depends
on the parameters a, b.

As mentioned in the introduction, we consider an example from Pao [11]:{
ut − d14u = u [a1 − b1u− c1J2 ∗ v] , x ∈ Ω, t > 0,

vt − d24v = v [a2 − b2J1 ∗ u− c2v] , x ∈ Ω, t > 0,
(3.1)

where ai, bi and ci, i = 1, 2, are positive constants. J2 ∗ v, J1 ∗ u are given by
(1.2) of [11].

Letting u = b1
a1
u, v = c2

a2
v, and dropping the bars for simplification, (3.1) is

transformed into{
ut − d14u = a1u [1− u− aJ2 ∗ v] , x ∈ Ω, t > 0,

vt − d24v = a2v [1− bJ1 ∗ u− v] , x ∈ Ω, t > 0,

where a = a2c1
a1c2

> 0, b = a1b2
a2b1

> 0. By using our new Lyapunov function, we
could also obtain the global asymptotic stability of positive constant steady-
state solution of system (3.1) when a < 1, b < 1.

The biological interpretation of Theorem 2.1 is that for a large type of com-
petition systems, coexistence will always hold, which is a very common phe-
nomena in the natural world.

In the following, we give some numerical simulations for a special case of
system (1.1). We consider system (1.1) with the coefficients r1 = r2 = 1,
a = 0.8, b = 0.5. Obviously, a < 1, b < 1, therefore, system (1.1) has a
unique positive constant steady-state ( 1

3 ,
5
6 ). From Theorem 2.1, we know that

the positive constant steady-state ( 1
3 ,

5
6 ) is globally asymptotically stable when

a < 1, b < 1. The numerical simulations are shown in Figs. 1-4.

Figure 1. The numerical approximation to the solution of
system (1.1) with τ1 = τ2 = 3.5, d1 = 10, d2 = 60 and initial
conditions u(t, x) = 0.25, u(t, x) = 0.75.

Acknowledgment. We would like to thank Professor Wan-Tong Li for many
helpful discussions. The authors thank the referee for his/her careful reading
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Figure 2. The numerical approximation to the solution of
system (1.1) with τ1 = τ2 = 10, d1 = 10, d2 = 60 and initial
conditions u(t, x) = 0.25, u(t, x) = 0.75.

Figure 3. The numerical approximation to the solution of
system (1.1) with τ1 = τ2 = 3.5, d1 = 100, d2 = 1 and initial
conditions u(t, x) = 0.25, u(t, x) = 0.75.

Figure 4. The numerical approximation to the solution of
system (1.1) with τ1 = τ2 = 10, d1 = 100, d2 = 1 and initial
conditions u(t, x) = 0.25, u(t, x) = 0.75.
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