• Title/Summary/Keyword: threshold voltage model

Search Result 163, Processing Time 0.023 seconds

Deviation of Threshold Voltages for Conduction Path of Double Gate MOSFET (이중게이트 MOSFET의 전도중심에 따른 문턱전압의 변화)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2511-2516
    • /
    • 2012
  • This paper have analyzed the change of threshold voltage for conduction path of double gate(DG) MOSFET. The threshold voltage roll-off among the short channel effects of DGMOSFET have become obstacles of precise device operation. The analytical solution of Poisson's equation have been used to analyze the threshold voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The threshold voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the threshold voltage. Resultly, we know the threshold voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

Relationship of Threshold Voltage Roll-off and Gate Oxide Thickness in Asymmetric Junctionless Double Gate MOSFET (비대칭형 무접합 이중게이트 MOSFET에서 산화막 두께와 문턱전압이동 관계)

  • Jung, Hakkee
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.194-199
    • /
    • 2020
  • The threshold voltage roll-off for an asymmetric junctionless double gate MOSFET is analyzed according to the top and bottom gate oxide thicknesses. In the asymmetric structure, the top and bottom gate oxide thicknesses can be made differently, so that the top and bottom oxide thicknesses can be adjusted to reduce the leakage current that may occur in the top gate while keeping the threshold voltage roll-off constant. An analytical threshold voltage model is presented, and this model is in good agreement with the 2D simulation value. As a result, if the thickness of the bottom gate oxide film is decreased while maintaining a constant threshold voltage roll-off, the top gate oxide film thickness can be increased, and the leakage current that may occur in the top gate can be reduced. Especially, it is observed that the increase of the bottom gate oxide thickness does not affect the threshold voltage roll-off.

Analysis of Threshold Voltage for Double Gate MOSFET of Symmetric and Asymmetric Oxide Structure (대칭 및 비대칭 산화막 구조의 이중게이트 MOSFET에 대한 문턱전압 분석)

  • Jung, Hakkee;Kwon, Ohshin;Jeong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.755-758
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage for oxide structure of symmetric and asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET can be fabricated with different top and bottom gate oxide thickness, while the symmetric DGMOSFET has the same top and bottom gate oxide thickness. Therefore optimum threshold voltage is considered for top and bottom gate oxide thickness of asymmetric DGMOSFET, compared with the threshold voltage of symmetric DGMOSFET. To obtain the threshold voltage, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. We investigate for bottom gate voltage, channel length and thickness, and doping concentration how top and bottom gate oxide thickness influences on threshold voltage using this threshold voltage model. As a result, threshold voltage is greatly changed for oxide thickness, and we know the changing trend very differs with bottom gate voltage, channel length and thickness, and doping concentration.

  • PDF

Analysis of Subthreshold Characteristics for Device Parameter of DGMOSFET Using Gaussian Function

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.733-737
    • /
    • 2011
  • This paper has studied subthreshold characteristics for double gate(DG) MOSFET using Gaussian function in solving Poisson's equation. Typical two dimensional analytical transport models have been presented for symmetrical Double Gate MOSFETs (DGMOSFETs). Subthreshold swing and threshold voltage are very important factors for digital devices because of determination of ON and OFF. In general, subthreshold swings have to be under 100mV/dec, and threshold voltage roll-off small in short channel devices. These models are used to obtain the change of subthreshold swings and threshold voltage for DGMOSFET according to channel doping profiles. Also subthreshold swings and threshold voltages have been analyzed for device parameters such as channel length, channel thickness and channel doping profiles.

Analytical Model for the Threshold Voltage of Long-Channel Asymmetric Double-Gate MOSFET based on Potential Linearity (전압분포의 선형특성을 이용한 Long-Channel Asymmetric Double-Gate MOSFET의 문턱전압 모델)

  • Yang, Hee-Jung;Kim, Ji-Hyun;Son, Ae-Ri;Kang, Dae-Gwan;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • A compact analytical model of the threshold voltage for long-channel Asymmetric Double-Gate(ADG) MOSFET is presented. In contrast to the previous models, channel doping and carrier quantization are taken into account. A more compact model is derived by utilizing the potential distribution linearity characteristic of silicon film at threshold. The accuracy of the model is verified by comparisons with numerical simulations for various silicon film thickness, channel doping concentration and oxide thickness.

A 2-D Model for the Potential Distribution and Threshold Voltage of Fully Depleted Short-Channel Ion-Implanted Silicon MESFET's

  • Jit, S.;Morarka, Saurabh;Mishra, Saurabh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.173-181
    • /
    • 2005
  • A new two dimensional (2-D) model for the potential distribution of fully depleted short-channel ion-implanted silicon MESFET's has been presented in this paper. The solution of the 2-D Poisson's equation has been considered as the superposition of the solutions of 1-D Poisson's equation in the lateral direction and the 2-D homogeneous Laplace equation with suitable boundary conditions. The minimum bottom potential at the interface of the depletion region due to the metal-semiconductor junction at the Schottky gate and depletion region due to the substrate-channel junction has been used to investigate the drain-induced barrier lowering (DIBL) and its effects on the threshold voltage of the device. Numerical results have been presented for the potential distribution and threshold voltage for different parameters such as the channel length, drain-source voltage, and implanted-dose and silicon film thickness.

Modeling and Simulation of Threshold Voltage Shift in Organic Thin-film Transistors (유기박막 트랜지스터에서 문턱전압 이동의 모델링 및 시뮬레이션)

  • Jung, Taeho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • In this paper the author proposes a method of implementing a numerical model for threshold voltage ($V_{th}$) shift in organic thin-film transistors (OTFTs) into SPICE tools. $V_{th}$ shift is first numerically modeled by dividing the shift into sequentially ordered groups. The model is then used to derive a simulations model which takes into simulation parameters and calculation complexity. Finally, the numerical and simulation models are implemented in AIM-SPICE. The SPICE simulation results agree well with the $V_{th}$ shift obtained from an OTFT fabricated without any optimization. The proposed method is also used to implement the stretched-exponential time dependent $V_{th}$ shift in AIM-SPICE and the results show the proposed method is applicable to various types of $V_{th}$ shifts.

A Study on the Threshold voltage and I-V Characteristics in the Ion-implanted Short channel E-IGFET(II) (Ion-Implanted short Channel E-IGFET의 Threshold 전압과 I-V특성에 관한 연구(II))

  • Son, Sang-Hui;Kim, Hong-Bae;Gwak, Gye-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.51-58
    • /
    • 1985
  • A simple model for the impurity profile in an ion-implanted channel layer of an enhance-ment type IGFET is assumed and a simple expression for the threshold voltage is derived by the assumed impurity profile. In application, the concept of correction factor K is used and the value of threshold voltage is well agreed with experimental value. Also, 1-V character-istics curve is well agreed with experimental value. In addition, this program is packaged and is utilized.

  • PDF

Analysis of Dimension Dependent Threshold Voltage Roll-off for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 분석)

  • Jeong Hak-Gi;Lee Jae-Hyung;Joung Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.869-872
    • /
    • 2006
  • In this paper, the threshold voltage roll-off been analyzed for nano structure double gate FinFET. The analytical current model has been developed , including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current, and WKB(Wentzel- framers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off Is very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects and this process has to be developed.

  • PDF

Analysis of Dimension-Dependent Threshold Voltage Roll-off and DIBL for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 및 DIBL 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.760-765
    • /
    • 2007
  • In this paper, the threshold voltage roll-off and drain induced barrier lowering(DIBL) have been analyzed for nano structure double gate FinFET. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics were used to calculate thermionic omission current, and WKB(Wentzel- Kramers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off and DIBL are very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects, and this process has to be developed.