• Title/Summary/Keyword: thin film transistors (TFTs)

Search Result 384, Processing Time 0.03 seconds

Active control of field emitter arrays with a-Si:H TFTs (비정질 실리콘 박막 트랜지스터에 의한 전계방출기 어레이의 능동제어)

  • 엄현석;송윤호;강승열;정문연;조영래;황치선;이상균;김도형;이진호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.33-36
    • /
    • 2000
  • Active-controlled field emitter arrays (ACFEAs) are developed by monolithically integrating molybdenum field emitter arrays with amorphous silicon thin film transistors (a-Si:H TFTs) on glass substrate. Transfer and output characteristics of the fabricated ACFEAs showed that the emission currents of FEAs can be accurately controlled by the gate bias voltages of TFTs. Also, the emission currents of the ACFEAs kept stable without any fluctuations during the 30 min-operation.

  • PDF

Polysilicon Thin Film Transistors on spin-coated Polyimide layer for flexible electronics

  • Pecora, A.;Maiolo, L.;Cuscuna, M.;Simeone, D.;Minotti, A.;Mariucci, L.;Fortunato, G.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.261-264
    • /
    • 2007
  • We developed a non self-aligned poly-silicon TFTs fabrication process at two different temperatures on spin-coated polyimide layer above Si-wafer. After TFTs fabrication, the polyimide layer was mechanically released from the Si-wafer and the devices characteristics were compared. In addition self-heating and hot-carrier induced instabilities were analysed.

  • PDF

Sr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors by sol-gel process

  • Kim, Jaeyoung;Choi, Seungbeom;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.2-301.2
    • /
    • 2016
  • Metal-oxide thin-film transistors (TFTs) have gained a considerable interest in transparent electronics owing to their high optical transparency and outstanding electrical performance even in an amorphous state. Also, these metal-oxide materials can be solution-processed at a low temperature by using deep ultraviolet (DUV) induced photochemical activation allowing facile integration on flexible substrates [1]. In addition, high-dielectric constant (k) inorganic gate dielectrics are also of a great interest as a key element to lower the operating voltage and as well as the formation of coherent interface with the oxide semiconductors, which may lead to a considerable improvement in the TFT performance. In this study, we investigated the electrical properties of solution-processed high-k strontium-doped AlOx (Sr-AlOx) gate dielectrics. Using the Sr-AlOx as a gate dielectric, indium-gallium-zinc oxide (IGZO) TFTs were fabricated and their electrical properties are analyzed. We demonstrate IGZO TFTs with a 10-nm-thick Sr-AlOx gate dielectric which can be operated at a low voltage (~5 V).

  • PDF

Effects of $H_2$ vs. $O_2$ Plasma Pretreatment of Gate Oxide on the Degradation Phenomenon of Low-Temperature Polysilicon Thin-Film Transistors

  • Lee, Seok-Woo;Kang, Ho-Chul;Yang, Joon-Young;Kim, Eu-Gene;Kim, Sang-Hyun;Lim, Kyoung-Moon;Kim, Chang-Dong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1254-1257
    • /
    • 2004
  • Comparative study on the effects of $H_2$ vs. $O_2$ plasma pretreatment of gate oxide on the degradation phenomenon of p-channel low-temperature polysilicon (LTPS) thin-film transistors (TFTs) were performed. After high drain current stress (HDCS) with $V_{gs}$ = $V_{ds}$, the p-channel TFTs pretreated by $O_2$ plasma showed increased immunity to the degradation of device characteristics such as threshold voltage and maximum field effect mobility because of the higher binding energy of Si-O bond than that of Si-H bond. The investigation of degradation phenomenon of these parameters with the applied power suggests that self-heating can be the major cause of degradation of polysilicon TFTs.

  • PDF

Variation of electrical properties in solution processed SiInZnO thin film transistors (용액공정을 이용하여 제작된 SiInZnO 박막 트랜지스터의 전기적 특성 변화)

  • Park, Ki-Ho;Choi, Jun-Young;Chun, Yoon-Soo;Ju, Byeong-Kwon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1453-1454
    • /
    • 2011
  • We have investigated the effect of silicon contents (0~0.4 molar ratios) on the performance of solution processed silicon-indium-zinc oxide (SIZO) thin-film transistors (TFTs). Despites its solution processed channel layer, low annealed temperature below $200^{\circ}C$ in air has been used for SIZO-TFTs. The $V_{th}$ is shifted from -4.04 to 5.15 V as increasing Si ratio in the SIZO-TFTs. The positive shift of $V_{th}$ as increasing Si contents in SIZO system indicates that Si suppresses the carrier generation in the active channel layer since $V_{th}$ is defined as the voltage required accumulating sufficient charge carriers to form a conductive channel path.

  • PDF

Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review

  • Raja, Jayapal;Jang, Kyungsoo;Nguyen, Cam Phu Thi;Yi, Junsin;Balaji, Nagarajan;Hussain, Shahzada Qamar;Chatterjee, Somenath
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.234-240
    • /
    • 2015
  • Amorphous oxide-based thin-film transistors (TFTs) have drawn a lot of attention recently for the next-generation high-resolution display industry. The required field-effect mobility of oxide-based TFTs has been increasing rapidly to meet the demands of the high-resolution, large panel size and 3D displays in the market. In this regard, the current status and major trends in the high mobility oxide-based TFTs are briefly reviewed. The various approaches, including the use of semiconductor, dielectric, electrode materials and the corresponding device structures for realizing high mobility oxide-based TFT devices are discussed.

Effects of Ga Composition Ratio and Annealing Temperature on the Electrical Characteristics of Solution-processed IGZO Thin-film Transistors

  • Lee, Dong-Hee;Park, Sung-Min;Kim, Dae-Kuk;Lim, Yoo-Sung;Yi, Moonsuk
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2014
  • Bottom gate thin-film transistors were fabricated using solution processed IGZO channel layers with various gallium composition ratios that were annealed on a hot plate. Increasing the gallium ratio from 0.1 to 0.6 induced a threshold voltage shift in the electrical characteristics, whereas the molar ratio of In:Zn was fixed to 1:1. Among the devices, the IGZO-TFTs with gallium ratios of 0.4 and 0.5 exhibited suitable switching characteristics with low off-current and low SS values. The IGZO-TFTs prepared from IGZO films with a gallium ratio of 0.4 showed a mobility, on/off current ratio, threshold voltage, and subthreshold swing value of $0.1135cm^2/V{\cdot}s$, ${\sim}10^6$, 0.8 V, and 0.69 V/dec, respectively. IGZO-TFTs annealed at $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$ were also fabricated. Annealing at lower temperatures induced a positive shift in the threshold voltage and produced inferior electrical properties.

Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors (활성층 두께 및 열처리 온도에 따른 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 전기적 특성 변화)

  • Baek, Chan-Soo;Lim, Kee-Joe;Lim, Dong-Hyeok;Kim, Hyun-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.521-524
    • /
    • 2012
  • We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.

Fabrication and Electrical Characteristics of Transparent and Bendable a-IGZO Thin-film Transistors (투명 유연 a-IGZO 박막트랜지스터의 제작 및 전기적 특성)

  • Park, Sukhyung;Cho, Kyoungah;Oh, Hyungon;Kim, Sangsig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.120-124
    • /
    • 2016
  • In this study, we fabricate transparent and bendable a-IGZO (amorphous indium gallium zinc oxide) TFTs (thin-film transistors) with a-IZO (amorphous indium zinc oxide) transparent electrodes on plastic substrates and investigate their electrical characteristics under bending states. Our a-IGZO TFTs show a high transmittance of 82% at a wavelength of 550 nm. And these TFTs have an $I_{on}/I_{off}$ ratio of $1.8{\times}10^8$, a field effect mobility of $15.4cm^2/V{\cdot}s$, and a subthreshold swing of 186 mV/dec. The good electrical characteristics are retained even after bending with a curvature radius of 18 mm corresponding to a strain of 0.5% owing to mechanical durability of the transparent electrodes used in this study.

A Level Shifter Using Aluminum-Doped Zinc Tin Oxide Thin Film Transistors with Negative Threshold Voltages

  • Hwang, Tong-Hun;Yang, Ik-Seok;Kim, Kang-Nam;Cho, Doo-Hee;KoPark, Sang-Hee;Hwang, Chi-Sun;Byun, Chun-Won;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.464-465
    • /
    • 2009
  • A new level shifter using n-channel aluminum-doped zinc tin oxide (AZTO) thin film transistors (TFTs) was proposed to integrate driving circuits on qVGA panels for mobile display applications. The circuit used positive feedback loop to overcome limitations of circuits designed with oxide TFTs which is depletion mode n-channel TFTs. The measured results shows that the proposed circuit shifts 10 V input voltage to 20 V output voltage and its power consumption is 0.46 mW when the supply voltage is 20 V and the operating frequency is 10 kHz.

  • PDF