Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.7.521

Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors  

Baek, Chan-Soo (College of Electrical Engineering, Chungbuk National University)
Lim, Kee-Joe (College of Electrical Engineering, Chungbuk National University)
Lim, Dong-Hyeok (Display Engineering School, Doowon Technical University College)
Kim, Hyun-Hoo (Display Engineering School, Doowon Technical University College)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.7, 2012 , pp. 521-524 More about this Journal
Abstract
We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.
Keywords
Active layer; In-Ga-Zn-O; Trap; Annealing; Thickness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Kim, E. Chong, D. H. Kim, Y. W. Jeon, D. H. Kim, and S. Y. Lee1, Appl. Phys. Lett., 99, 062108 (2011).   DOI
2 S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, Appl. Phys. Lett., 98, 122105 (2011).   DOI
3 S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, Thin Solid Films, 519, 5146 (2011).   DOI
4 A. H. Chen, H. T. Cao, H. Z. Zhang, L. Y. Liang, Z. M. Liu, Z. Yu, Q. Wan, Microelectron. Eng., 87, 2019 (2010).   DOI
5 S. Y. Lee, D. H. Kim, B. Kim, H. K. Jung, and D. H. Kim, Thin Solid Films, 520, 3796 (2012).   DOI
6 H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, and J. F. Wager, Thin Solid Films, 354, 2826 (2008).
7 K. Nomura, T. Aoki, K. Nakamura, T. Kamiya, T. Nakanishi, T. Hasegawa, M. Kimura, T. Kawase, M. Hirano, and H. Hosono, Appl. Phys. Lett., 96, 263509 (2010).   DOI
8 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004).   DOI   ScienceOn
9 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003).   DOI   ScienceOn
10 R. A. Street, Adv. Mater., 21, 2007 (2009).   DOI
11 M. J. Lee, S. J. Kang, J. Y. Baik, K. K. Jeong, H. D. Kim, H. J. Shin, J. Chung, J. Lee, and J. Lee, J. Appl. Phys., 108, 024507 (2010).   DOI
12 W. Lim, J. H. Jang, S. H. Kim, D. P. Norton, V. Craciun, S. J. Pearton, F. Ren, and H. Shen, Appl. Phys. Lett., 93, 082102 (2008).   DOI
13 S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. K. Bae, J. H. Lee, B. D. Ahn, S. Y. Park, J. H. Park, J. Park, H. I. Kwon, D. M. Kim, and D. H. Kim, IEEE Electron Devices Lett., 33, 62 (2012).   DOI