Browse > Article
http://dx.doi.org/10.5573/JSTS.2014.14.2.163

Effects of Ga Composition Ratio and Annealing Temperature on the Electrical Characteristics of Solution-processed IGZO Thin-film Transistors  

Lee, Dong-Hee (Department of Electronics Engineering, Pusan National University)
Park, Sung-Min (Department of Electronics Engineering, Pusan National University)
Kim, Dae-Kuk (Department of Electronics Engineering, Pusan National University)
Lim, Yoo-Sung (Department of Electronics Engineering, Pusan National University)
Yi, Moonsuk (Department of Electronics Engineering, Pusan National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.14, no.2, 2014 , pp. 163-168 More about this Journal
Abstract
Bottom gate thin-film transistors were fabricated using solution processed IGZO channel layers with various gallium composition ratios that were annealed on a hot plate. Increasing the gallium ratio from 0.1 to 0.6 induced a threshold voltage shift in the electrical characteristics, whereas the molar ratio of In:Zn was fixed to 1:1. Among the devices, the IGZO-TFTs with gallium ratios of 0.4 and 0.5 exhibited suitable switching characteristics with low off-current and low SS values. The IGZO-TFTs prepared from IGZO films with a gallium ratio of 0.4 showed a mobility, on/off current ratio, threshold voltage, and subthreshold swing value of $0.1135cm^2/V{\cdot}s$, ${\sim}10^6$, 0.8 V, and 0.69 V/dec, respectively. IGZO-TFTs annealed at $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$ were also fabricated. Annealing at lower temperatures induced a positive shift in the threshold voltage and produced inferior electrical properties.
Keywords
IGZO; Oxide TFT; Solution-processed; annealing; Ga;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Park, S. W. Kim, S. I. Kim, C. J. Kim, I. H. Song, Y. S. Park, U. I. Jung, D. H. Kim, and J. S. Lee, Adv. Mater., 22, 5512 (2010)   DOI   ScienceOn
2 W. H. Jeong, G. H. Kim, D. L. Kim, H. S. Shin, H. J. Kim, M. K. Ryu, K. B. Park, J. B. Seon, and S. Y. Lee, Thin Solid Films, 519, 5740 (2011)   DOI   ScienceOn
3 J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, Thin Solid Films, 520, 1679 (2012)   DOI   ScienceOn
4 E. G. Chong, Y. W. Jeon, Y. S. Chun, D. H. Kim, and S. Y. Lee, Thin Solid Films, 519, 4347 (2011)   DOI
5 H. R. Kim, J. Y. Park, S. H. Lee, G. H. Lee, P. G. Song, Y. C. Kang, and D. H. Kim, Electrochem. Solid-State Lett., 14, H411 (2011)   DOI
6 H. S. Jeon, S.K. Na, M. R. Moon, D. G. Jung, H. S. Kim, and H. J. Lee, J. Electrochem. Soc., 158, H949 (2011)   DOI
7 S. Y. Kwon, J. W. Park, and P. D. Rack, Electrochem. Solid-State Lett., 12, H278 (2009)   DOI   ScienceOn
8 Y. Kikuchi, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 518, 3017 (2010)   DOI   ScienceOn
9 G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, Appl. Phys. Lett., 94, 233501 (2009)   DOI
10 G. H. Kim, W. H. Jeong, and H. J. Kim, Phys. Status Solidi A, 207, 1677 (2010)   DOI   ScienceOn
11 S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, Solid-State Electron., 54, 1497 (2010)   DOI   ScienceOn
12 S. Y. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, Thin Solid Films, 519, 5146 (2011)   DOI
13 S. Y. Lee, S. P. Chang, and J. S. Lee, Thin Solid Films, 518, 3030 (2010)   DOI   ScienceOn
14 J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. W. Song, and C. S. Hwang, Electrochem. Solid-State Lett., 11, H157 (2008)   DOI   ScienceOn
15 G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, J. Electrochem. Soc., 156, H7 (2009)   DOI   ScienceOn
16 K. W. Lee, K. M. Kim, K. Y. Heo, S. K. Park, S. K. Lee, and H. J. Kim, Curr. Appl. Phys., 11, 280 (2011)   DOI   ScienceOn