• 제목/요약/키워드: thin film transistors

검색결과 869건 처리시간 0.033초

공정 변수에 따른 비정질 인듐갈륨징크옥사이드 산화물 반도체 트랜지스터의 전기적 특성 연구 (Study on the Electrical Properties of a-IGZO TFTs Depending on Processing Parameters)

  • 정유진;조경철;김승한;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제23권5호
    • /
    • pp.349-352
    • /
    • 2010
  • Thin-film transistors (TFTs) were fabricated using amorphous indium gallium zinc oxide (a-IGZO) channels by rf-magnetron sputtering at room temperature. We have studied the effect of oxygen partial pressure on the threshold voltage($V_{th}$) of a-IGZO TFTs. Interestingly, the $V_{th}$ value of the oxide TFTs are slightly shifted in the positive direction due to increasing $O_2$ partial pressure from 0.007 to 0.009 mTorr. The device performance is significantly affected by varying $O_2$ ratio, which is closely related with oxygen vacancies provide the needed free carriers for electrical conduction.

화소 설계 어레이 시뮬레이터 (PDAST)를 이용한 대면적 고화질을 위한 TFT-LCD의 화소설계 (YFY-LCD Pixel Design for Large Size, High Quality using PDAST(Pixel Design Array Simulator))

  • 이영삼;윤영준;정순신;최종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1364-1366
    • /
    • 1998
  • An active-matrix LCD using thin film transistors (TFT) has been widely recognized as having potential for high-quality color flat-panel displays. Pixel-Design Array Simulation Tool (PDAST) was used to profoundly understand the gate signal distortion and pixel charging capability, which are the most critical limiting factors for high-quality TFT-LCDs. Since PDAST can simulate the gate, data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the resistivity of gate line material on the pixel operations can be effectively analyzed. The gate signal delay. pixel charging ratio, level-shift of the pixel voltage were simulated with varying the parameters. The information obtained from this study could be utilized to design the larger area and finer image quality panel.

  • PDF

트리플 풀다운 산화물 박막트랜지스터 게이트 드라이버 (Triple Pull-Down Gate Driver Using Oxide TFTs)

  • 김지선;박기찬;오환술
    • 대한전자공학회논문지SD
    • /
    • 제49권1호
    • /
    • pp.1-7
    • /
    • 2012
  • 산화물 박막트랜지스터를 이용하여 액정 디스플레이 패널에 내장할 수 있는 새로운 게이트 드라이버 회로를 설계하고 제작하였다. 산화물 박막트랜지스터는 문턱전압이 음의 값을 갖는 경우가 많기 때문에 본 회로에서는 음의 게이트 전압을 인가하여 트랜지스터를 끄는 방법을 적용하였다. 또한 세 개의 풀다운 트랜지스터를 병렬로 배치하고 번갈아 사용하므로 안정적인 동작이 가능하다. 제안한 회로는 트랜지스터의 문턱전압이 -3 V ~ +6 V인 범위에서 정상적으로 동작하는 것을 시뮬레이션을 통해서 확인하였으며, 실제로 유리 기판 상에 제작하여 안정적으로 동작하는 것을 검증하였다.

Photoresist reflow 공정을 이용한 자기정합 오프셋 poly-Si TFT (Self-Aligned Offset Poly-Si TFT using Photoresist reflow process)

  • 유준석;박철민;민병혁;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1582-1584
    • /
    • 1996
  • The polycrystalline silicon thin film transistors (poly-Si TFT) are the most promising candidate for active matrix liquid crystal displays (AMLCD) for their high mobilities and current driving capabilities. The leakage current of the poly-Si TFT is much higher than that of the amorphous-Si TFT, thus larger storage capacitance is required which reduces the aperture ratio fur the pixel. The offset gated poly-Si TFTs have been widely investigated in order to reduce the leakage current. The conventional method for fabricating an offset device may require additional mask and photolithography process step, which is inapplicable for self-aligned source/drain ion implantation and rather cost inefficient. Due to mis-alignment, offset devices show asymmetric transfer characteristics as the source and drain are switched. We have proposed and fabricated a new offset poly-Si TFT by applying photoresist reflow process. The new method does not require an additional mask step and self-aligned ion implantation is applied, thus precise offset length can be defined and source/drain symmetric transfer characteristics are achieved.

  • PDF

ZnO에서 질소 불순물에 의한 p-type Capacitance (P-type Capacitance Observed in Nitrogen-doped ZnO)

  • 유현근;김세동;이동훈;김정환;조중열
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.817-820
    • /
    • 2012
  • We studied p-type capacitance characteristics of ZnO thin-film transistors (TFT's), grown by metal organic chemical vapor deposition (MOCVD). We compared two ZnO TFT's: one grown at $450^{\circ}C$ and the other grown at $350^{\circ}C$. ZnO grown at $450^{\circ}C$ showed smooth capacitance profile with electron density of $1.5{\times}10^{20}cm^{-3}$. In contrast, ZnO grown at $350^{\circ}C$ showed a capacitance jump when gate voltage was changed to negative voltages. Current-voltage characteristics measured in the two samples did not show much difference. We explain that the capacitance jump is related to p-type ZnO layer formed at the $SiO_2$ interface. Current-voltage and capacitance-voltage data support that p-type characteristics are observed only when background electron density is very low.

Improvement in Bias Stability of Amorphous IGZO Thin Film Transistors by High Pressure H2O2 Annealing

  • 송지훈;김효진;한영훈;백종한;정재경
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.231.2-231.2
    • /
    • 2014
  • 훌륭한 전기적 특성을 갖는 ZnO 기반의 산화물 반도체 박막트랜지스터(TFT)는 AMOLEDs에 적용될 수 있다. 하지만 이러한 장점에도 불구하고 산화물 반도체 TFT소자에 전압이 인가되었을 때 문턱 전압이 이동하게 되는 안정성 문제를 갖는다. 따라서 이를 해결하기 위한 연구가 널리 진행 되고 있다. 본 연구소에서는 고압 분위기 열처리를 통해 안정성의 원인으로 작용할 수 있는 산소공공(Oxygen vacancy)을 감소시키는 연구를 진행하였다. 산화물 반도체 TFT소자의 안정성을 향상시키는 대표적인 분위기 열처리로는 산소 고압 열처리(HPA)가 있으며, 또한 H2O 기체를 사용한 열처리를 통해 TFT소자의 안정성을 높일 수 있다는 연구 결과가 보고된 바 있다. 본 연구에서는 IGZO TFT소자에 H2O보다 더 큰 반응성을 갖는 산화제인 H2O2 기체를 사용한 HPA를 통해 positive bias stress(PBS) 및 negative bias illumination stress(NBIS) 조건에서 안정성이 향상됨을 확인하였고 이를 H2O 기체를 사용한 경우와 비교하였다. 그 결과 H2O2 기체를 산화제로 사용할 때 기존 H2O 기체에 비해 효과적인 PBS 및 NBIS 신뢰성 개선을 확인하였다.

  • PDF

Solution-based Multistacked Active Layer IGZO TFTs

  • Kim, Hyunki;Choi, Byoungdeog
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.351.1-351.1
    • /
    • 2014
  • In this study, we prepared the solution-based In-Ga-Zn oxide thin film transistors (IGZO TFTs) of multistacked active layer and characterized the gate bias instability by measuring the change in threshold voltage caused by stacking. The solutions for IGZO active layer were prepared by In:Zn=1:1 mole ratio and the ratio of Ga was changed from 20% to 30%. The TFTs with multistacked active layer was fabricated by stacking single, double and triple layers from the prepared solutions. As the number of active layer increases, the saturation mobility shows the value of 1.2, 0.8 and 0.6 (). The electrical properties have the tendency such as decreasing. However when gate bias VG=10 V is forced to gate electrode for 3000 s, the threshold voltage shift was decreased from 4.74 V to 1.27 V. Because the interface is formed between the each layers and this affected the current path to reduce the electrical performances. But the uniformity of active layer was improved by stacking active layer with filling the hole formed during pre-baking so the stability of device was improved. These results suggest that the deposition of multistacked active layer improve the stability of the device.

  • PDF

Solution-processed indium-zinc oxide with carrier-suppressing additives

  • Kim, Dong Lim;Jeong, Woong Hee;Kim, Gun Hee;Kim, Hyun Jae
    • Journal of Information Display
    • /
    • 제13권3호
    • /
    • pp.113-118
    • /
    • 2012
  • Metal oxide semiconductors were considered promising materials as backplanes of future displays. Moreover, the adoption of carrier-suppressing metal into indium-zinc oxide (IZO) has become one of the most important themes in the metal oxide research field. In this paper, efforts to realize and optimize IZO with diverse types of carrier suppressors are summarized. Properties such as the band gap of metal in the oxidized form and its electronegativity were examined to confirm their relationship with the metal's carrier-suppressing ability. It was concluded that those two properties could be used as indicators of the carrier-suppressing ability of a material. As predicted by the properties, the alkali earth metals and early transition metals used in the research effectively suppressed the carrier and optimized the electrical properties of the metal oxide semiconductors. With the carrier-suppressing metals, IZO-based thin-film transistors with high (above $1cm^2/V{\cdot}s$) mobility, a lower than 0.6V/dec sub-threshold gate swing, and an over $3{\times}10^6$ on-to-off current ratio could be achieved.

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

Charge Pumping Measurements Optimized in Nonvolatile Polysilicon Thin-film Transistor Memory

  • 이동명;안호명;서유정;김희동;송민영;조원주;김태근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.331-331
    • /
    • 2012
  • With the NAND Flash scaling down, it becomes more and more difficult to follow Moore's law to continue the scaling due to physical limitations. Recently, three-dimensional (3D) flash memories have introduced as an ideal solution for ultra-high-density data storage. In 3D flash memory, as the process reason, we need to use poly-Si TFTs instead of conventional transistors. So, after combining charge trap flash (CTF) structure and poly-Si TFTs, the emerging device SONOS-TFTs has also suffered from some reliability problem such as hot carrier degradation, charge-trapping-induced parasitic capacitance and resistance which both create interface traps. Charge pumping method is a useful tool to investigate the degradation phenomenon related to interface trap creation. However, the curves for charge pumping current in SONOS TFTs were far from ideal, which previously due to the fabrication process or some unknown traps. It needs an optimization and the important geometrical effect should be eliminated. In spite of its importance, it is still not deeply studied. In our work, base-level sweep model was applied in SONOS TFTs, and the nonideal charge pumping current was optimized by adjusting the gate pulse transition time. As a result, after the optimizing, an improved charge pumping current curve is obtained.

  • PDF