DOI QR코드

DOI QR Code

Solution-processed indium-zinc oxide with carrier-suppressing additives

  • Kim, Dong Lim (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Jeong, Woong Hee (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Gun Hee (LCD R&D Center, Samsung Electronics Co. Ltd.) ;
  • Kim, Hyun Jae (School of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2012.05.14
  • 심사 : 2012.06.20
  • 발행 : 2012.09.30

초록

Metal oxide semiconductors were considered promising materials as backplanes of future displays. Moreover, the adoption of carrier-suppressing metal into indium-zinc oxide (IZO) has become one of the most important themes in the metal oxide research field. In this paper, efforts to realize and optimize IZO with diverse types of carrier suppressors are summarized. Properties such as the band gap of metal in the oxidized form and its electronegativity were examined to confirm their relationship with the metal's carrier-suppressing ability. It was concluded that those two properties could be used as indicators of the carrier-suppressing ability of a material. As predicted by the properties, the alkali earth metals and early transition metals used in the research effectively suppressed the carrier and optimized the electrical properties of the metal oxide semiconductors. With the carrier-suppressing metals, IZO-based thin-film transistors with high (above $1cm^2/V{\cdot}s$) mobility, a lower than 0.6V/dec sub-threshold gate swing, and an over $3{\times}10^6$ on-to-off current ratio could be achieved.

키워드

참고문헌

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. H.-H. Hsieh, H.-H. Lu, H.-C. Ting, C.-S. Chuang, C.-Y. Chen, and Y. Lin, J. Inf. Display 11, 160 (2010). https://doi.org/10.1080/15980316.2010.9665845
  3. G.H. Kim, B.D. Ahn, H.S. Shin, W.H. Jeong, and H.J. Kim, presented at European Material Research Society Spring Meeting, Congress Center, Strasbourg, France, 2009 (unpublished).
  4. G.H. Kim, H.S. Shin, B.D. Ahn, K.H. Kim, W.J. Park, and H.J. Kim, J. Electrochem. Soc. 156, H7 (2009). https://doi.org/10.1149/1.2976027
  5. M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka, Phys. Rev. B 61, 1811 (2000). https://doi.org/10.1103/PhysRevB.61.1811
  6. P.D.C. King and T.D. Veal, J. Phys.: Condens. Matter 23, 1 (2011).
  7. N.L. Dehuff, E.S. Kettenring, D. Hong, H.Q. Chiang, J.F. Wager, R.L. Hoffman, C.-H. Park, and D.A. Keszler, J. Appl. Phys. 97, 064505 (2005). https://doi.org/10.1063/1.1862767
  8. Y.-L. Wang, F. Ren, W. Lim, D.P. Norton, S.J. Pearton, I.I. Kravchenko, and J.M. Zavada, Appl. Phys. Lett. 90, 232103 (2007). https://doi.org/10.1063/1.2746084
  9. J.-S. Park, K. Kim, Y.-G. Park, Y.-G. Mo, H.D. Kim, and J.K. Jeong, Adv. Mater. 21, 329 (2009). https://doi.org/10.1002/adma.200802246
  10. C.-J. Kim, S. Kim, J.-H. Lee, J.-S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J.H. Kim, S.T. Shin, and U.-I. Chung, Appl. Phys. Lett. 95, 252103 (2009). https://doi.org/10.1063/1.3275801
  11. H. Hosono, J. Non-Cryst. Solids 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  12. W.J. Park, H.S. Shin, B.D. Ahn, G.H. Kim, S.M. Lee, K.H. Kim, and H.J. Kim, Appl. Phys. Lett. 93, 083508 (2008). https://doi.org/10.1063/1.2976309
  13. H.S. Shin, G.H. Kim, W.H. Jeong, B.D. Ahn, and H.J. Kim, Jpn J. Appl. Phys. 49, 03CB01 (2010). https://doi.org/10.1143/JJAP.49.03CB01
  14. G.H. Kim,W.H. Jeong, H.J. Kim, Phys. Status Solidi A 207, 1677 (2010). https://doi.org/10.1002/pssa.200983742
  15. Y. Choi, G.H. Kim, W.H. Jeong, J.H. Bae, H.J. Kim, J.-M. Hong, and J.-W. Yu, Appl. Phys. Lett. 97, 162102 (2010). https://doi.org/10.1063/1.3503964
  16. S.J. Kim, D.L. Kim, Y.S. Rim,W.H. Jeong, D.N. Kim, D.H. Yoon, and H.J. Kim, J. Cryst. Growth 326, 163 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.088
  17. W.H. Jeong, G.H. Kim, D.L. Kim, H.S. Shin, H.J. Kim, M.- K. Ryu, K.-B. Park, J.-B, Seon, and S.-Y. Lee, Thin Solid Films 519, 5740 (2011). https://doi.org/10.1016/j.tsf.2010.12.210
  18. D.H. Yoon, S.J. Kim, W.H. Jeong, D.L. Kim, Y.S. Rim, and H.J. Kim, J. Cryst. Growth 326, 171 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.090
  19. T.H. Jeong, S.J. Kim, D.H.Yoon,W.H. Jeong, D.L. Kim, H.S. Lim, and H.J. Kim, Jpn J. Appl. Phys. 50, 070202 (2011). https://doi.org/10.1143/JJAP.50.070202
  20. T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Jpn J. Appl. Phys. 34, L971 (1995). https://doi.org/10.1143/JJAP.34.L971
  21. M.P. Taylor, D.W. Readey, C.W. Teplin, M.F.A.M. van Hest, J.L. Alleman, M.S. Dabney, L.M. Gedvilas, B.M. Keyes, B. To, J.D. Perkins, and D.S. Ginley, Meas. Sci. Technol. 16, 90 (2005). https://doi.org/10.1088/0957-0233/16/1/012
  22. J.H. Jeong,H.W.Yang, J.-S. Park, J.K. Jeong,Y.-G. Mo, H.D. Kim, J. Song, and C.S. Hwang, Electrochem. Solid-State Lett. 11, H157 (2008). https://doi.org/10.1149/1.2903209

피인용 문헌

  1. Oxygen “Getter” Effects on Microstructure and Carrier Transport in Low Temperature Combustion-Processed a-InXZnO (X = Ga, Sc, Y, La) Transistors vol.135, pp.29, 2013, https://doi.org/10.1021/ja403586x
  2. Impact of dopant species on the interfacial trap density and mobility in amorphous In-X-Zn-O solution-processed thin-film transistors vol.115, pp.21, 2012, https://doi.org/10.1063/1.4880163
  3. Electrical Characteristics of a-IGZO TFTs With ${\hbox{SiO}}_{2}$ Gate Insulator Prepared by RF Sputtering vol.12, pp.3, 2016, https://doi.org/10.1109/jdt.2015.2490744