• 제목/요약/키워드: thin film transistors

검색결과 869건 처리시간 0.026초

Transparent ZnO based thin film transistors fabricated at room temperature with high-k dielectric $Gd_2O_3$ gate insulators

  • Tsai, Jung-Ruey;Li, Chi-Shiau;Tsai, Shang-Yu;Chen, Jyun-Ning;Chien, Po-Hsiu;Feng, Wen-Sheng;Liu, Kou-Chen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.374-377
    • /
    • 2009
  • The characteristics of the deposited thin films of the zinc oxide (ZnO) at different oxygen pressures will be elucidated in this work. The resistivity of ZnO thin films were dominated by the carrier concentration under high oxygen pressure conditions while controlled by the carrier mobility at low oxygen ambiences. In addition, we will show the characteristics of the transparent ZnO based thin film transistor (TFT) fabricated at a full room temperature process with gate dielectric of gadolinium oxide ($Gd_2O_3$) thin films.

  • PDF

Comparative Study on Interfacial Traps in Organic Thin-Film Transistors According to Deposition Methods of Organic Semiconductors

  • Park, Jae-Hoon;Bae, Jin-Hyuk
    • 한국응용과학기술학회지
    • /
    • 제30권2호
    • /
    • pp.290-296
    • /
    • 2013
  • We analysed interfacial traps in organic thin-film transistors (TFTs) in which pentacene and 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) organic semiconductors were deposited by means of vacuum-thermal evaporation and drop-coating methods, respectively. The thermally-deposited pentacene film consists of dentritic grains with the average grain size of around 1 m, while plate-like crystals over a few hundred microns are observed in the solution-processed TIPS-pentacene film. From the transfer characteristics of both TFTs, lower subthreshold slope of 1.02 V/decade was obtained in the TIPS-pentacene TFT, compared to that (2.63 V/decade) of the pentacene transistor. The interfacial trap density values calculated from the subthreshold slope are about $3.4{\times}10^{12}/cm^2$ and $9.4{\times}10^{12}/cm^2$ for the TIPS-pentacene and pentacene TFTs, respectively. Herein, lower subthreshold slope and less interfacial traps in TIPS-pentacene TFTs are attributed to less domain boundaries in the solution-processed TIPS-pentacene film.

Structural and Electrical Features of Solution-Processed Li-doped ZnO Thin Film Transistor Post-Treated by Ambient Conditions

  • Kang, Tae-Sung;Koo, Jay-Hyun;Kim, Tae-Yoon;Hong, Jin-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2012
  • Transparent oxide semiconductors are increasingly becoming one of good candidates for high efficient channel materials of thin film transistors (TFTs) in large-area display industries. Compare to the conventional hydrogenated amorphous silicon channel layers, solution processed ZnO-TFTs can be simply fabricated at low temperature by just using a spin coating method without vacuum deposition, thus providing low manufacturing cost. Furthermore, solution based oxide TFT exhibits excellent transparency and enables to apply flexible devices. For this reason, this process has been attracting much attention as one fabrication method for oxide channel layer in thin-film transistors (TFTs). But, poor electrical characteristic of these solution based oxide materials still remains one of issuable problems due to oxygen vacancy formed by breaking weak chemical bonds during fabrication. These electrical properties are expected due to the generation of a large number of conducting carriers, resulting in huge electron scattering effect. Therefore, we study a novel technique to effectively improve the electron mobility by applying environmental annealing treatments with various gases to the solution based Li-doped ZnO TFTs. This technique was systematically designed to vary a different lithium ratio in order to confirm the electrical tendency of Li-doped ZnO TFTs. The observations of Scanning Electron Microscopy, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy were performed to investigate structural properties and elemental composition of our samples. In addition, I-V characteristics were carried out by using Keithley 4,200-Semiconductor Characterization System (4,200-SCS) with 4-probe system.

  • PDF

스텝 어닐링에 의한 저온 및 고온 n형 다결정 실리콘 박막 트랜지스터의 전기적 특성 분석 (Analysis of Electrical Characteristics of Low Temperature and High Temperature Poly Silicon TFTs(Thin Film Transistors) by Step Annealing)

  • 이진민
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.525-531
    • /
    • 2011
  • In this paper, experimental analyses have been performed to compare the electrical characteristics of n channel LT(low temperature) and HT(high temperature) poly-Si TFTs(polycrystalline silicon thin film transistors) on quartz substrate according to activated step annealing. The size of the particles step annealed at low temperature are bigger than high temperature poly-Si TFTs and measurements show that the electric characteristics those are transconductance, threshold voltage, electric effective mobility, on and off current of step annealed at LT poly-Si TFTs are high more than HT poly-Si TFT's. Especially we can estimated the defect in the activated grade poly crystalline silicon and the grain boundary of LT poly-Si TFT have more high than HT poly-Si TFT's due to high off electric current. Even though the size of particles of step annealed at low temperature, the electrical characteristics of LT poly-Si TFTs were investigated deterioration phenomena that is decrease on/off current ratio depend on high off current due to defects in active silicon layer.

InGaZnO 용액의 농도가 Drop-casting으로 제작된 산화물 박막 트랜지스터의 전기적 특성에 미치는 영향 (Effect of InGaZnO Solution Concentration on the Electrical Properties of Drop-Cast Oxide Thin-Film Transistors)

  • 노은경;유경민;김민회
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.332-335
    • /
    • 2020
  • Drop casting, a solution process, is a simple low-cost fabrication technique that does not waste material. In this study, we elucidate the effect of the concentration of a InGaZnO solution on the electrical properties of drop-cast oxide thin-film transistors. The higher the concentration the larger the amount of remnant InGaZnO solutes, which yields a thicker thin film. Accordingly, the electrical properties were strongly dependent on the concentration. At a high concentration of 0.3 M (or higher), a large current flowed but did not lead to switching characteristics. At a concentration lower than 0.01 M, switching characteristics were observed, but the mobility was small. In addition to a high mobility, sufficient switching characteristics were obtained at a concentration of 0.1 M owing to the appropriate thickness of the semiconductor layer. This study provides a technical basis for the low-cost fabrication of switching devices capable of driving a sensor array.

Triple Layer Passivation for Organic Thin-Film Transistors

  • Ryoo, Ki-Hyun;Lee, Cheon-An;Jin, Sung-Hun;Jung, Keum-Dong;Park, Chang-Bum;Lee, Jong-Duk;Shin, Hyung-Cheol;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1310-1312
    • /
    • 2005
  • Passivation of organic thin-film transistors (OTFTs) using organic and metal thin-film was presented. Parylene-C and titanium were used as an organic and metal layer, respectively. With the proposed passivation method the degradation of electric parameters of OTFTs was relieved compared with non-passivated devices. Several electric parameters such as on/off current, field-effect mobility, and threshold voltage were shown.

  • PDF

Indium-Zinc 산화물 박막 트랜지스터 기반의 N-MOS 인버터 (Indium-Zinc Oxide Thin Film Transistors Based N-MOS Inverter)

  • 김한상;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.437-440
    • /
    • 2017
  • We report on amorphous thin-film transistors (TFTs) with indium zinc oxide (IZO) channel layers that were fabricated via a solution process. We prepared the IZO semiconductor solution with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions. The solution- processed IZO TFTs showed good performance: a field-effect mobility of $7.29cm^2/Vs$, a threshold voltage of 4.66 V, a subthreshold slope of 0.48 V/dec, and a current on-to-off ratio of $1.62{\times}10^5$. To investigate the static response of our solution-processed IZO TFTs, simple resistor load-type inverters were fabricated by connecting a $2-M{\Omega}$ resistor. Our IZOTFTbased N-MOS inverter performed well at operating voltage, and therefore, isa good candidate for advanced logic circuits and display backplane.

열처리를 통한 HgSe 나노입자 기반 박막 트랜지스터의 전기적 특성 향상 (Improved Electrical Characteristics of HgSe Nanoparticle-based Thin Film Transistors by Thermal Annealing)

  • 윤정권;조경아;김상식
    • 전기전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.219-223
    • /
    • 2010
  • 본 연구에서는, PVA를 게이트 유전체로 이용하여 백 게이트 (back-gate) 구조의 HgSe 나노입자 박막트랜지스터를 플라스틱 기판위에 제작하였다. 제작된 박막트랜지스터는 $100^{\circ}C$ 에서 5분 동안의 열처리 과정을 통하여 이동도 $16\;cm^2$/Vs, 전류 점멸비 $10^4$의 우수한 특성을 나타내었다. 열처리에 따른 표면 거칠기의 감소가 소자의 전기적 특성향상의 원인이라는 것을 AFM 이미지를 통하여 확인 할 수 있었다. 0.6%의 strain을 기판에 인가하면서 기판의 휘어짐에 따른 전류변화를 관찰하였다.

IZO 박막 트랜지스터의 UV를 이용한 후열처리 조사 시간에 따른 전기적 특성 평가 (Evaluation of Electrical Properties of IZO Thin-Film with UV Post-Annealing Treatment Time)

  • 이재윤;김한상;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.93-98
    • /
    • 2020
  • We investigated the effect of a post-annealing process using ultraviolet (UV) light on the electrical properties of solution-processed InZnO (IZO) thin-film transistors (TFTs). UV light was irradiated on IZO TFTs for different time periods of 0s, 30s, and 90s. We measured transfer and retention stability curves to evaluate the performance of the fabricated TFTs. In addition, we measured height, amplitude, and phase AFM images to analyze changes in the surface and morphology of the devices. AFM measurements were performed by setting the drive amplitude of the cantilever tip to 47.9 mV in tapping mode, then dividing the device surface into 500 nm × 500 nm. In the case of IZO TFT irradiated with UV for 30s, the electron mobility and Ion/Ioff ratio were improved, the threshold voltage was reduced by approximately 2 V, and the subthreshold swing also decreased form 1.34 V/dec to 1.11 V/dec.

A Protective Layer on the Active Layer of Al-Zn-Sn-O Thin-Film Transistors for Transparent AMOLEDs

  • Cho, Doo-Hee;KoPark, Sang-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Cho, Kyoung-Ik;Ryu, Min-Ki;Chung, Sung-Mook;Cheong, Woo-Seok;Yoon, Sung-Min;Hwang, Chi-Sun
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.137-142
    • /
    • 2009
  • Transparent top-gate Al-Zn-Sn-O (AZTO) thin-film transistors (TFTs) with an $Al_2O_3$ protective layer (PL) on an active layer were studied, and a transparent 2.5-inch QCIF+AMOLED (active-matrix organic light-emitting diode) display panel was fabricated using an AZTO TFT backplane. The AZTO active layers were deposited via RF magnetron sputtering at room temperature, and the PL was deposited via two different atomic-layer deposition (ALD) processes. The mobility and subthreshold slope were superior in the TFTs annealed in vacuum and with oxygen plasma PLs compared to the TFTs annealed in $O_2$ and with water vapor PLs, but the bias stability of the TFTs annealed in $O_2$ and with water vapor PLs was excellent.