Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.7.437

Indium-Zinc Oxide Thin Film Transistors Based N-MOS Inverter  

Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University)
Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.7, 2017 , pp. 437-440 More about this Journal
Abstract
We report on amorphous thin-film transistors (TFTs) with indium zinc oxide (IZO) channel layers that were fabricated via a solution process. We prepared the IZO semiconductor solution with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions. The solution- processed IZO TFTs showed good performance: a field-effect mobility of $7.29cm^2/Vs$, a threshold voltage of 4.66 V, a subthreshold slope of 0.48 V/dec, and a current on-to-off ratio of $1.62{\times}10^5$. To investigate the static response of our solution-processed IZO TFTs, simple resistor load-type inverters were fabricated by connecting a $2-M{\Omega}$ resistor. Our IZOTFTbased N-MOS inverter performed well at operating voltage, and therefore, isa good candidate for advanced logic circuits and display backplane.
Keywords
Oxide thin film transistor; Oxide semiconductor; NMOS inverter; Oxide TFT inverter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, J. Appl. Phys., 90, 2397 (2001). [DOI: https://doi.org/10.1063/1.1389076]   DOI
2 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: https://doi.org/10.1126/science.1083212]   DOI
3 H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 89, 112123 (2006). [DOI: https://doi.org/10.1063/1.2353811]   DOI
4 C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: https://doi.org/10.1103/physrevlett.85.1012]   DOI
5 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]   DOI
6 D. Macdonald and L. J. Geerligs, Appl. Phys. Lett., 85, 4061 (2004). [DOI: https://dx.doi.org/10.1063/1.1812833]   DOI
7 J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher, IEEE Trans. Electron Dev., 53, 1893 (2006). [DOI: https://doi.org/10.1109/ted.2006.878026]   DOI
8 B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc., 129, 2750 (2007). [DOI: https://doi.org/10.1021/ja068876e]   DOI
9 H. C. Cheng, C. F. Chen, and C. Y. Tsay, Appl. Phys. Lett., 90, 012113 (2007). [DOI: https://doi.org/10.1063/1.2404590]   DOI
10 Y. J. Chang, D. H. Lee, G. S. Herman, and C. H. Chang, Electrochem. Solid-State Lett., 10, H135 (2007). [DOI: https://doi.org/10.1149/1.2666588]   DOI
11 D. Redinger and V. Subramanian, IEEE Trans. Electron Dev., 54, 1301 (2007). [DOI: https://doi.org/10.1109/ted.2007. 895861]   DOI
12 W. B. Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: https://doi.org/10.1063/1.2120895]   DOI
13 C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: https://doi.org/10.1149/1.2800562]   DOI
14 C. Y. Koo, K. K. Song, T. H. Jun, D. J. Kim, Y. M. Jeong, S. H. Kim, J. W. Ha, and J. H. Moon, J. Electrochem. Soc., 157, J111 (2010). [DOI: https://doi.org/10.1149/1.3298886]   DOI