• 제목/요약/키워드: thermomechanical reliability

검색결과 12건 처리시간 0.027초

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제25권3호
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

구리 TSV의 열기계적 신뢰성해석 (Thermo-mechanical Reliability Analysis of Copper TSV)

  • 좌성훈;송차규
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.46-51
    • /
    • 2011
  • TSV technology raises several reliability concerns particularly caused by thermally induced stress. In traditional package, the thermo-mechanical failure mostly occurs as a result of the damage in the solder joint. In TSV technology, however, the driving failure may be TSV interconnects. In this study, the thermomechanical reliability of TSV technology is investigated using finite element method. Thermal stress and thermal fatigue phenomenon caused by repetitive temperature cycling are analyzed, and possible failure locations are discussed. In particular, the effects of via size, via pitch and bonding pad on thermo-mechanical reliability are investigated. The plastic strain generally increases with via size increases. Therefore, expected thermal fatigue life also increase as the via size decreases. However, the small via shows the higher von Mises stress. This means that smaller vias are not always safe despite their longer life expectancy. Therefore careful design consideration of via size and pitch is required for reliability improvement. Also the bonding pad design is important for enhancing the reliability of TSV structure.

$\mu$BGA 장기신뢰성에 미치는 언더필영향 (Effect of Underfill on $\mu$BGA Reliability)

  • 고영욱;신영의;김종민
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.138-141
    • /
    • 2002
  • There are continuous efforts in the electronics industry to a reduced electronic package size. Reducing the size of electronic packages can be achieved by a variety of means, and for ball grid array(BGA) packages an effective method is to decrease the pitch between the individual balls. Chip scale package(CSP) and BGA are now one of the major package types. However, a reduced package size has the negative effect of reducing board-level reliability. The reliability concern is for the different thermal expansion rates of the two-substrate materials and how that coefficient CTE mismatch creates added stress to the BGA solder joint when thermal cycled. The point of thermal fatigue in a solder joint is an important factor of BGA packages and knowing at how many thermal cycles can be ran before failure in the solder BGA joint is a must for designing a reliable BGA package. Reliability of the package was one of main issues and underfill was required to improve board-level reliability. By filling between die and substrate, the underfill could enhance the reliability of the device. The effect of underfill on various thermomechanical reliability issues in $\mu$BGA packages is studied in this paper.

  • PDF

초음파 서모그래피를 적용한 피스톤 스커트 절단균열에 대한 비파괴 신뢰성 평가 (The Nondestructive Reliability Evaluation which it Applies Ultrasound Thermography about Cutting Crack of Piston Skirt)

  • 양용하;마상동;김재열
    • Tribology and Lubricants
    • /
    • 제26권6호
    • /
    • pp.336-340
    • /
    • 2010
  • Ultrasound thermography detects defects by radiating 20 ~ 30 kHz ultrasound waves to the samples and capturing the heat generated from the defects with the use of an infrared thermographic camera. This technology is being spotlighted as a next-generation NDE for the automobile and aerospace industries because it can test large areas and can detect defects such as cracks and exfoliations in real time. The heating mechanism of the ultrasound vibration has not been accurately determined, but the thermomechanical coupling effect and the surface or internal friction are estimated to be the main causes. When this heat is captured by an infrared thermographic camera, the defects inside or on the surface of objects can be quickly detected. Although this technology can construct a testing device relatively simply and can detect defects within a short time, there are no reliable data about the factors related to its detection ability. In this study, the ultrasound thermography technique was used to manufacture gasoline and diesel engine piston specimens, and nondestructive reliability tests to verify the applicability and validity of the ultrasound thermography technique.

Evaluation of Thermal Deformation Model for BGA Packages Using Moire Interferometry

  • Joo, Jinwon;Cho, Seungmin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.230-239
    • /
    • 2004
  • A compact model approach of a network of spring elements for elastic loading is presented for the thermal deformation analysis of BGA package assembly. High-sensitivity moire interferometry is applied to evaluate and calibrated the model quantitatively. Two ball grid array (BGA) package assemblies are employed for moire experiments. For a package assembly with a small global bending, the spring model can predict the boundary conditions of the critical solder ball excellently well. For a package assembly with a large global bending, however, the relative displacements determined by spring model agree well with that by experiment after accounting for the rigid-body rotation. The shear strain results of the FEM with the input from the calibrated compact spring model agree reasonably well with the experimental data. The results imply that the combined approach of the compact spring model and the local FE analysis is an effective way to predict strains and stresses and to determine solder damage of the critical solder ball.

플립칩 어셈블리의 언더필 최적설계에 관한 연구 (A Study on Optimal Design of Underfill for Flip Chip Package Assemblies)

  • 이선병;김종민;이성혁;신영의
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.150-152
    • /
    • 2007
  • It has been known that the underfilling technique is effective in reducing thermal and environmental stress concentration at solder joint in FC asscemblies. In this paper, the effect of thermomechanical properties of underfill such as coefficient of thermal expansion(CTE) and Young's modulus on reliability of FC assembly under thermal cycling was investigated. For parametric study for optimal design of underfill, finite element analyses(FEA) were performed for seven different CTEs and five different Young's modulus. The results show that the concentrated maximum stress decreases as Young's modulus of underfill increases and the CTE of underfill decreases.

  • PDF

컴퓨터 시뮬레이션을 이용한 저항용접에 관한 연구 (A study on the stress distribution and nugget formation in resistance welding process using computer simulation)

  • 함원국
    • Journal of Welding and Joining
    • /
    • 제9권3호
    • /
    • pp.41-51
    • /
    • 1991
  • The thermomechanical coupling phenomena in the resistance welding process is complicated due to interactions of mechanical, thermal and electrical factors. Although experimental investigations of resistance spot welding have been carried out, but there are a few by computer simulation. so the purpose of this research is to decrease the time and cost much required in experimental investigation by carrying out the analysis of the resistance spot welding process through computer simulation based on the finite element method. The tool used in the computer simulation is the commercial ANSYS program package. A two dimensional axisymetric model is used to simulate the resistance spot welding for two stainless steel sheets of equal thickness and parametric study is carried out for variable welding current, workpieces of unequal thickness and dissimilar materials. The results from the computer simulation are in good agreement with the experimental one. Through these results, such items as stress distribution, temperature profiles, thermal expansion and weld nugget formation are predicted. Reliability and applicability of finite element models have been demonstrated to simulate and to analyze the resistance spot welding process.

  • PDF

구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향 (The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films)

  • 황슬기;김영만
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

Solid Epoxy를 이용한 패키지 및 솔더 크랙 신뢰성 확보를 위한 실험 및 수치해석 연구 (Experimental and Numerical Analysis of Package and Solder Ball Crack Reliability using Solid Epoxy Material)

  • 조영민;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제27권1호
    • /
    • pp.55-65
    • /
    • 2020
  • 반도체 패키지에서 언더필의 사용은 패키지의 응력 완화 및 습기 방지에 중요할 뿐만 아니라, 충격, 진동 시에 패키지의 신뢰성을 향상시키는 중요한 소재이다. 그러나 최근 패키지의 크기가 커지고, 매우 얇아짐에 따라서 언더필의 사용이 오히려 패키지의 신뢰성을 저하하는 현상이 발견되고 있다. 이러한 이슈를 해결하기 위하여 본 연구에서는 언더필을 대신 할 소재로서 solid epoxy를 이용한 패키지를 개발하여 신뢰성을 향상시키고자 하였다. 개발된 solid epoxy를 스마트 폰의 AP 패키지에 적용하여 열사이클링 신뢰성 시험과 수치해석을 통하여 패키지의 신뢰성을 평가하였다. 신뢰성 향상을 위한 최적의 solid epoxy 소재 및 공정 조건을 찾기 위하여 solid epoxy 의 사용 개수, PCB 패드 타입 및 solid epoxy의 물성 등, 3 개의 인자가 패키지의 신뢰성에 미치는 영향을 고찰하였다. Solid epoxy를 AP 패키지에 적용한 결과 solid epoxy가 없는 경우 보다, solid epoxy를 적용한 경우가 신뢰성이 향상되었다. 또한 solid epoxy를 패키지의 외곽 4곳에 적용한 경우 보다는 6 곳에 적용한 경우가 더 신뢰성이 좋음을 알 수 있었다. 이는 solid epoxy가 패키지의 열팽창에 따른 응력을 완화 시키는 역할을 하여 패키지의 신뢰성이 향상되었음을 의미한다. 또한 PCB 패드 타입에 대한 신뢰성을 평가한 결과 NSMD (non-solder mask defined) 패드를 사용할 경우가 SMD (solder mask defined) 패드 보다 신뢰성이 더 향상됨을 알 수 있었다. NSMD 패드의 경우 솔더와 패드가 접합하는 면적이 더 크기 때문에 구조적으로 안정하여 신뢰성 측면에서 더 유리하기 때문이다. 또한 열팽창계수가 다른 solid epoxy를 적용하여 신뢰성 평가를 한 결과, 열팽창계수가 낮은 solid epoxy를 사용한 경우가 신뢰성이 더 향상됨을 알 수 있었다.

멤브레인 형 섬유강화 복합재료의 열팽창 이방성을 고려한 열 기계적 특성 분석 (Analysis of Thermomechanical Properties Considering the Thermal Expansion Anisotropy of Membrane-Type Fiber-Reinforced Composite Material)

  • 정연제;김희태;김정대;오훈규;김용태;박성보;이제명
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.17-23
    • /
    • 2021
  • The membrane-type Liquefied Natural Gas (LNG) cargo tank is equipped with a double barrier to seal the LNG, of which the secondary barrier serves to prevent LNG leakage and mainly uses fiber-reinforced composite materials. However, the composite materials have thermal expansion anisotropy, which deteriorates shape distortion and mechanical performance due to repeated thermal loads caused by temperature changes between cryogenic and ambient during the unloading of LNG. Therefore, in this study, the longitudinal thermal expansion characteristics of the composite materials were obtained using a vertical thermo-mechanical analyzer, and the elastic modulus was obtained through the tensile test for each temperature to perform thermal load analysis for each direction. This is considered that it is useful to secure reliability from the viewpoint of the design of materials for a LNG cargo hold.