Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.12.1064

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films  

Hwang, Seulgi (Department of Material Science & Engineering, Chonnam National University)
Kim, Youngman (Department of Material Science & Engineering, Chonnam National University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.12, 2010 , pp. 1064-1069 More about this Journal
Abstract
Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.
Keywords
thin films; vapor deposition; mechanical properties; thermal analysis; coefficient of thermal expansion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Y. Zoo, D. Adams, J. W. Mayer, and T. L. Alford, Thin Solid Films 513, 170 (2006).   DOI   ScienceOn
2 Youngman Kim and Sung-Ho Choo, Thin Solid Films 394, 284 (2001).
3 Jae Wook Shin and Eric Chason, Phys. Rev. Lett. 103, 056102 (2009).   DOI   ScienceOn
4 R. C. Cammarata, T. M. Trimble, and D. J. Srolovitz, J. Mater. Res. 15, 2468 (2000).   DOI   ScienceOn
5 F. Spaepen, Acta Mater. 48, 31 (2000).   DOI   ScienceOn
6 C. V. Thompson and R. Carel, J. Mech. Phys. Solids 44(5-6), 657-673 (1996).   DOI
7 M. Cho, S. Hwang, S. Ryu, and Y. Kim, J. Kor. Inst. Met. & Mater. 47, 466 (2009).
8 M. M. de Lima, Jr., R. G. Lacerda, J. Vilcarromero, and F. C. Marques, J. Appl. Phys. 86, 4936 (1999).   DOI
9 A. Mezin, Sulf. Coat. Tech. 200, 5259 (2006).   DOI   ScienceOn
10 Naoki Ono, Kounosuke Kitamura, Ken Nakajima, and Yasushi Shimanuki, Jpn. J. Appl. Phys. 39, 368 (2000).   DOI
11 W. D. Callister, Jr., Materials Science and Engineering an Introduction, seventh ed., John Wiley & Sons (2007).
12 M. Ohring, Materials Science of Thin Films, second ed., Academic Press (2002).
13 G. D. Barrera, J. A. O'Bruno, T. H. K. Barron, and N. L. Allan, J. Phys.:Condens. Matter 17, R217-R252 (2005).   DOI   ScienceOn
14 S. H. Hong, K. S. Kim, Y.-M. Kim, J.-H. Hahn, C.-S. Lee, and J.-H. Park, Compos. Sci. Technol 65, 1401 (2005).   DOI   ScienceOn
15 X. Deng, M. Koopman, N. Chawla, and K. K. Chawla, Mater. Sci. Eng. A364, 240 (2004).