• 제목/요약/키워드: thermoelectric material

검색결과 188건 처리시간 0.023초

PCM을 장착한 열전소자 냉각시스템의 저장 중 피망의 품질 평가 (Quality evaluations of bell pepper in cold system combined with TEM (thermoelectric materials) and PCM (phase change material))

  • 성정민;김소희;김병삼;김종훈;김지영;권기현
    • 한국식품저장유통학회지
    • /
    • 제23권4호
    • /
    • pp.471-478
    • /
    • 2016
  • 본 연구에서는 신선식품의 품질유통 시스템 구축을 위하여 Peltier 효과를 기반으로 한 열전소자 배송시스템에 잠열재를 탑재한 이동식 저온 컨테이너를 농산물의 유통에 적용하고자 하였다. 실험 방법은 개발된 열전소자 배송시스템 및 개발잠열재를 이용한 이동식 저온 컨테이너에 저장 중 피망의 품질을 평가하여 대조구인 EPS 박스의 피망과 비교 평가하였다. 피망의 저장 중 품질측정 결과, 중량 감소량은 증가하였으나 수분함량은 저장기간동안 90.96~94.43% 수준을 유지하였다. 비타민 C 함량은 감소하는 경향을 나타내었으며 처리구(BPT-5, 10)의 경우 대조구(BPC)에 비해 감소율이 낮게 나타났다. 색도 측정 결과 ${\Delta}E$ 값은 저장기간동안 증가하였으며 21일 때 BPT-5의 ${\Delta}E$ 값은 5.05인데 반해 BPC의 값은 41.8로 크게 증가함을 알 수 있었다. 총균수 또한 저장 21일째 대조구에 비해 BPT-5 처리구가 약 1 log scale 낮은 수준을 나타내어 연구에서 개발한 수배송 용기가 품질 유지에 효과적인 것으로 판단된다. 전체적인 결과를 종합하였을 때, 본 연구를 위하여 개발된 이동식 저온 컨테이너가 피망의 저장성 증가에 효과가 있는 것으로 판단되었다. 하지만 이동식 저온 컨테이너의 개발은 초기단계이며 잠열재의 무게로 인해 하중부담이 크다는 단점을 보완하기 위해 더 많은 연구가 이루어져야 할 것이다.

기계적 합금화법으로 제조된 $Bi_2Te_3$계 열전화합물 분말의 열분석 (Thermal Analysis of $Bi_2Te_3$ Based Thernoelectric Compound Powder Produced by Mechanical Alloying)

  • 김봉서;양준혁;오민욱;박수동;이희웅;박규섭;배동식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.151-152
    • /
    • 2006
  • Bi-Te thermoelectric powder was fabricated by mechanical alloying method for 1 to 10 hours under vacuum in planetary mill. We investigated the properties of mechanically alloyed Bi-Te powder by thermal analysis, X-ray diffractometer and FESEM with EDS Bi-Te raw material was formed to $Bi_2Te_3$ phase at condition over 3.5 hours of mechanical alloying time.

  • PDF

Sr 및 Ba을 포함하는 type-I Ge clathrate 화합물의 열전특성 (Thermoelectric Properties of Type-I Ge clathrates containing Sr and Ba)

  • 오민욱;김봉서;박수동;위당문;송재성;이희웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.143-144
    • /
    • 2006
  • Thermoelectric properties of $Sr_8Ga_{16}Ge_{30}$ and $Ba_8Ga_{16}Ge_{30}$ clathrates were investigated in the temperature range between 323K and 923K. Both clathrates were fabricated by the arc-melting method. Homogeneous single phases were observed in the annealed clathrates. Electrical resistivities for both clathrates were increased as the temperature increased up to 823K. The sign of the Seebeck coefficients for both clathrates was negative, which means that the major carriers were electrons. The maximum values of ZT for $Sr_8Ga_{16}Ge_{30}$ and $Ba_8Ga_{16}Ge_{30}$ were 0.86 at 773K and 0.76 at 923K, respectively.

  • PDF

半導體 熱電材料를 利용한 熱流束 測定 센서의 性能 (Performance of the heat flux sensor using thermoelectric semiconductor material)

  • 황동원;정평석;주해호
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.622-629
    • /
    • 1988
  • 본 연구에서는 박판형 열유속 센서의 감도를 높임과 동시에 두께와 면적을 줄 이기 위한 방안으로서 시벡 계수(Seebeck doefficient)가 일반 열전대재료보다 월등히 큰 반도체 열전재료를 이용하여 박판형 센서를 제작하고 그 성능을 조사하였다. 센 서의 제작에 사용한 열전재료는 Melcor 사에서 열전 열펌프 생산에 사용하기 위하여 개발한 소자로서 통상 텔루루화 비스무스(bismuth telluride)라 불리우며 그 조성은 비스무스, 텔루륨, 셀레늄, 안티몬의 4가지 합금에 미량의 불순물(dopent)이 첨가된 것으로 불순물의 종류에 따라 전기적인 P형 또는 N형의 반도체가 되는 것으로 알려져 있으며 Table 1에 물성치가 나타나 있다.

Al 치환이 BiCuOSe의 열전 특성에 미치는 영향 (The Effects of Al-substitution on Thermoelectric and Charge Transport Properties of BiCuOSe Compounds)

  • 안태호;임영수;서원선;박철희;박찬
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.847-851
    • /
    • 2015
  • The effects of Al-substitution on thermoelectric and charge transport properties of BiCuOSe compounds were investigated. The compounds were prepared by a solid-state reaction and consolidated by SPS (spark plasma sintering). In spite of the increase in the hole concentration with increasing Al amounts in BiCuOSe compound, the electrical conductivity at room temperature was kept constant due to the reduction of mobility. However, electrical conductivities of Al-substituted BiCuOSe compounds at elevated temperature (> 600 K) were higher than those of BiCuOSe, and this result was discussed in terms of it's the band gap energy. The Seebeck coefficient was drastically reduced when Al was substituted in Bi site, which indicated that the electronic structure was influenced by the Al-substitution into Bi-site.

고온열전모듈용 금속유리계 페이스트 연구 (Research for Solder Paste in Metallic Glass System for Thermoelectric Modules)

  • 서승호;손근식;서강현;최순목
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.249-254
    • /
    • 2018
  • We researched about a bulk metallic glass system as an additive to an Ag paste for high temperature thermoelectric modules. Bulk metallic glass (BMG) ribbons were produced by using a rapid solidification process (RSP) under a cooling rate condition higher than $10^{\circ}C/sec$. We investigated BMG characteristics of the ribbons by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC) in order to evaluate the glass transition temperature ($T_g$) and the recrystallization temperature ($T_x$) lower than $400^{\circ}C$. A milling process was also developed to apply the BMG ribbons to a commercial Al paste as an additive for lower sintering temperature.

P-형 Skutterudite 소재의 고온 열전물성 제어를 위한 공정 개발 (Process Development for Enhancement of High Temperature Thermoelectric Properties in a p-Type Skutterudite)

  • 류붕거;노창완;최순목
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.495-499
    • /
    • 2020
  • Power factor improvement at high temperatures has been a major research topic for the development of skutterudite thermoelectric materials. Here, we attempted to optimize the process parameters for manufacturing skutterudite materials, especially for p-type systems. We focused on the effect of aging time variation to maximize the high-temperature performance of the Ce-filled Fe3CoSb12 skutterudite system. The optimized aging time was concluded to be a key parameter for the formation of single-phase nanostructures in this p-type skutterudite system. The optimized condition was effective in reducing the bipolar effect at high temperature ranges by increasing the carrier concentration in the p-type system. To confirm the conclusions, the electrical conductivity, Seebeck coefficient, and power factor were measured. The results matched well with the microstructure and with those of an XRD analysis performed for the system.

Influence of hot deformation and composition on microstructure development of magnesium-stannide alloys

  • Pandel, Divija;Banerjee, Malay K.
    • Advances in materials Research
    • /
    • 제9권3호
    • /
    • pp.171-187
    • /
    • 2020
  • The microstructural evolution of different compositions of Mg-Sn alloys (30%Sn-70%Mg, 40%Sn-60%Mg and 50%Sn-50%Mg) is studied at first to understand the changes observed with change in tin content and deformation conditions. The Mg2Sn phase increases with increase in tin content and a significant substructure development is found in 50%Sn-50%Mg alloy. The above observation led to further deformation studies on Mg2Sn based thermoelectric materials with higher tin percentage. The microstructure in terms of Electron backscatter diffraction (EBSD)measurements is studied in detail followed by the determination of thermoelectric properties i.e., Seebeck coefficient and electrical conductivity for both as cast and extruded Mg(2+x)Sn-Ag alloys. The electrical conductivity of the extruded Mg(2+x)Sn-.3wt%Ag {x =1} alloy was found to be more than its as cast counterpart while the Seebeck coefficient values remained almost the same.

Thermoelectric Material Design in Pseudo Binary Systems of $Mg_2Si-Mg_2Ge-Mg_2Sn$ on the Powder Metallurgy Route

  • Aizawa, Tatsuhiko;Song, Renbo;Yamamoto, Atsushi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.75-76
    • /
    • 2006
  • New PM route via bulk mechanical alloying is developed to fabricate the solid solution semi-conductive materials with $Mg_2Si_{1-x}Ge_x$ and $Mg_2Si_{1-y}Sn_y$ for 0 < x, y < 1 and to investigate their thermoelectric materials. Since $Mg_2Si$ is n-type and both $Mg_2Ge$ and $Mg_2Sn$ are p-type, pn-transition takes place at the specified range of germanium content, x, and tin content, y. Through optimization of chemical composition, solid-solution type thermoelectric semi-conductive materials are designed both for n-and p-type materials.

  • PDF

Variations of the Thermoelectric Characteristics of ZnO Nanofibers from the Use of a Thermal Treatment

  • Park, Yoonbeom;Cho, Kyoungah;Lee, Donghoon;Kim, Sangsig
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권4호
    • /
    • pp.208-211
    • /
    • 2016
  • In this study, thermal-treatment-derived variations of the thermoelectric characteristics of ZnO nanofibers (NFs) are examined. NFs that were prepared by electrospinning were transformed into n-type ZnO NFs after they were exposed to thermal heating for 30 min at 550℃. For the ZnO NFs, the Seebeck coefficient decreased from - 132.1 μV/K to - 44.6 μV/K over the heating-time range of 30 min to 120 min, while the electrical conductivity increased from 2.07 × 10-3 S/m to 0.18 S/m.