Browse > Article
http://dx.doi.org/10.12989/amr.2020.9.3.171

Influence of hot deformation and composition on microstructure development of magnesium-stannide alloys  

Pandel, Divija (Department of Materials Research Centre, MNIT)
Banerjee, Malay K. (Department of Metallurgical and Material Engineering, MNIT)
Publication Information
Advances in materials Research / v.9, no.3, 2020 , pp. 171-187 More about this Journal
Abstract
The microstructural evolution of different compositions of Mg-Sn alloys (30%Sn-70%Mg, 40%Sn-60%Mg and 50%Sn-50%Mg) is studied at first to understand the changes observed with change in tin content and deformation conditions. The Mg2Sn phase increases with increase in tin content and a significant substructure development is found in 50%Sn-50%Mg alloy. The above observation led to further deformation studies on Mg2Sn based thermoelectric materials with higher tin percentage. The microstructure in terms of Electron backscatter diffraction (EBSD)measurements is studied in detail followed by the determination of thermoelectric properties i.e., Seebeck coefficient and electrical conductivity for both as cast and extruded Mg(2+x)Sn-Ag alloys. The electrical conductivity of the extruded Mg(2+x)Sn-.3wt%Ag {x =1} alloy was found to be more than its as cast counterpart while the Seebeck coefficient values remained almost the same.
Keywords
thermoelectric materials; magnesium tin alloys; microstructure; deformation; annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 An, T.H, Park, C., Soon, W.S., Choi, S.M., Kim, I.H. and Kim, S.U. (2012a), "Enhancement of p-type thermoelectric properties in an $Mg_2Sn$ system", J. Korean. Phys, Soc., 60, 1717-1723. https://doi.org/10.3938/jkps.60.1717   DOI
2 An, T.H., Choi, S.M., Kim, I.H., Kim, S.U., Seo W.S., Kim, J.Y. and Park, C. (2012b), "Thermoelectric properties of a doped $Mg_2Sn$ system", Renew. Energy, 42, 23-27. https://doi.org/10.1016/j.renene.2011.09.030   DOI
3 Bahk, J.H., Bian, Z. and Shakouri, A. (2014), "Electron transport modeling and energy filtering for efficient thermoelectric $Mg_2Si_{1-x}Sn_x$ solid solutions", Phys. Rev. B, 89(7), 075204. https://doi.org/10.1103/PhysRevB.89.075204   DOI
4 Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A. and Elsheikh, M.H. (2014), "Recent advances on $Mg_2Si_{1-x}Sn_x$ materials for thermoelectric generation", Renew. Sustain. Energy Rev., 37, 569-584. https://doi.org/10.1016/j.rser.2014.05.060   DOI
5 Beer, A.G. and Barnett, M.R. (2007), "Microstructural development during hot working of Mg-3Al-1Zn", Metall. Mater. Trans. A, 38A, 1856-1867. https://doi.org/10.1007/s11661-007-9207-5   DOI
6 Minnich, A.J., Dresselhaus, M.S., Ren, Z.F. and Chen, G. (2009), "Bulk nanostructured thermoelectric materials: current research and future prospects", Energy Environ. Sci., 2(5), 466-479. https://doi.org/10.1039/B822664B   DOI
7 Ray, R.K. and Jonas, J.J. (1990), "Transformation textures in steels", Int. Mater. Rev. 35(1), 1-36. https://doi.org/10.1179/095066090790324046   DOI
8 Rowe, D.M. (1995), CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, Florida, United States.
9 Bux, S.K., Fleurial, J.P. and Kaner, R.B. (2010), "Nanostructured materials for thermoelectric applications", Chem. Commu., 46(44), 8311-8324. https://doi.org/10.1039/C0CC02627A   DOI
10 Biswas, K., He, J., Blum, I.D., Iwu, C., Hogan, T.P., Seidman, D.N., Dravid, V.P. and Kanatzidis, M.G. (2012), "High-performance bulk thermoelectrics with all-scale hierarchical architectures", Nature, 489, 414-418. https://doi.org/10.1038/nature11439   DOI
11 Chapellier, P.H., Ray, R.K. and Jonas, J.J. (1990), "Prediction of transformation textures in steels", Acta. Metall. Mater., 38(8), 1475-1490. https://doi.org/10.1016/0956-7151(90)90116-X   DOI
12 Chen, H.Y. and Savvides, N. (2009), "Microstructure and thermoelectric properties of n- and p-type doped $Mg_2Sn$ compounds prepared by the modified Bridgman method", J. Electron. Mater., 38, 1056-1060. https://doi.org/10.1007/s11664-008-0630-1   DOI
13 Chen, H.Y., Savvides, N., Dasgupta, T., Stiewe, C. and Mueller, E. (2010), "Electronic and thermal transport properties of $Mg_2Sn$ crystals containing finely dispersed eutectic structures", Physica Status Solidi (a), 207, 2523-2531. https://doi.org/10.1002/pssa.201026119   DOI
14 Choi, S.M., An, T.H., Seo, W.S., Park, C., Kim, I.H. and Kim, S.U. (2012), "Doping effects on thermoelectric properties in the $Mg_2Sn$ system", J. Electron. Mater., 41, 1071-1076. https://doi.org/10.1007/s11664-012-1985-x   DOI
15 Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A. and Mohamad, M. (2014), "A review on thermoelectric renewable energy: principle parameters that affect their performance", Renew. Sustain. Energy Rev., 30, 337-355. https://doi.org/10.1016/j.rser.2013.10.027   DOI
16 Snyder, G.J. and Toberer, E.S. (2008), "Complex thermoelectric materials", Nat. Mater., 7, 101-110. https://doi.org/10.1142/9789814317665_0016
17 Sahoo, S.K., Sabat, R.K., Panda, S., Mishra, S.C. and Suwas S. (2015), "Mechanical property of pure magnesium: from orientation perspective pertaining to deviation from basal orientation", J. Mater. Eng. Perf., 24(6), 2346-2353. https://doi.org/10.1007/s11665-015-1522-1   DOI
18 Santos, R., Yamini, S.A. and Dou, S.X. (2018), "Recent progress in magnesium-based thermoelectric materials", J. Mater. Chem. A, 6(8), 3328-3341. https://doi.org/10.1039/C7TA10415D   DOI
19 Shakouri, A. (2011), "Recent developments in semiconductor thermoelectric physics and materials", Annu. Rev. Mater. Res., 41, 399-431. https://doi.org/10.1146/annurev-matsci-062910-100445   DOI
20 Thiagarajan, S.J., Wang, W. and Yang, R. (2010), "Nanocomposites as high efficiency thermo- electric materials", Annual Review of Nano Research. World Scientific, Boulder, CO, USA.
21 Tritt, T.M. (2002), "Thermoelectric Materials: Principles, Structure, Properties, and Applications", In: Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., 1-11.
22 Tritt, T.M. (2004), Thermal conductivity theory, properties, and applications, Springer, New York, USA.
23 Tritt, T.M. and Subramanian, M.A. (2006), "Thermoelectric materials, phenomena, and applications: a bird's eye view", MRS Bull., 31(3), 188-229. https://doi.org/10.1557/mrs2006.44   DOI
24 Viennois, R., Colinet, C., Jund, P. and Tedenac, J.C. (2012), "Phase stability of ternary antifluorite type compounds in the quasi binary systems $Mg_2X-Mg_2Y$ (X, Y = Si, Ge, Sn) via ab-initio calculations", Intermetallics, 12, 145-151. https://doi.org/10.1016/j.intermet.2012.06.016
25 Humphreys, F.J. and Hatherly, M. (2004), Recrystallization and Related Annealing Phenomenon (Second Edition.
26 Fedorov, M.I., Zaitsev, V.K., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y. and Vedernikov, M.V. (2006), "Highly effective $Mg_2Si_{1-x}Sn_x$ thermoelectrics", Phys. Rev. B, 74(4), 45207. https://doi.org/10.1103/PhysRevB.74.045207   DOI
27 Han, C., Li, Z. and Dou, S. (2014), "Recent progress in thermoelectric materials", Chinese Sci. Bull., 59(18), 2073-2091. https://doi.org/10.1007/s11434-014-0237-2   DOI
28 Hu, L., Gao, H., Liu, X., Xie, H., Shen, J., Zhu, T. and Zhao, X. (2012), "Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects", J. Mater. Chem., 22(32), 16484-16490. https://doi.org/10.1039/C2JM32916F   DOI
29 Ion, S.E., Humphreys, F.J. and White, S.H. (1982), "Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium", Acta Metall., 30(10), 1909-1919. https://doi.org/10.1016/0001-6160(82)90031-1   DOI
30 Jiang, G., Chen, L., Gao, H., Du, Z., Zhao, X., Tritt, T.M. and Zhu, T. (2013), "Improving p-type thermoelectric performance of $Mg_2$ (Ge,Sn) compounds via solid solution and Ag doping", Intermetallics, 32, 312-317. https://doi.org/10.1016/j.intermet.2012.08.002   DOI
31 Johnson, D.D. and Alam, A. (2018), "Enhanced thermoelectric performance of $Mg_2Si_{1-x}Sn_x$ codoped with Bi and Cr", Phys. Rev B, 98(11), 115204. https://doi.org/10.1103/PhysRevB.98.115204   DOI
32 Kim, S., Wiendlocha, B., Jin, H., Tobola, J. and Heremans, J.P. (2014), "Electronic structure and thermoelectric properties of p-type Ag-doped $Mg_2Sn$ and $Mg_2Si_{1-x}Sn_x$ (x = 0.05, 0.1)", J. Appl. Phys., 116(15), 153706. https://doi.org/10.1063/1.4898013   DOI
33 Lee, D.M., Lim, C.H., Cho, D.C., Lee, Y.S. and Lee, C.H. (2006), "Effects of annealing on the thermoelectric and microstructural properties of deformed n-type $Bi_2Te_3$-based compounds", J. Electron. Mater, 35, 360-365. https://doi.org/10.1007/BF02692457   DOI
34 Wang, S., Yang, J., Toll, T., Yang, J., Zhang, W. and Tang, X. (2015), "Conductivity-limiting bipolar thermal conductivity in semiconductors", Sci. Rep., 5, 10136. https://doi.org/10.1038/srep10136   DOI
35 Xu, Z.J., Hu, L.P., Ying, P.J., Zhao, X.B. and Zhu, T.J. (2015), "Enhanced thermoelectric and mechanical properties of zone melted p-type $(Bi,Sb)_2Te_3$ thermoelectric materials by hot deformation", Acta Mater., 84, 385-392. https://doi.org/10.1016/j.actamat.2014.10.062   DOI
36 Zheng, J.C. (2008), "Recent advances on thermoelectric materials", Front. Phys. China, 3, 269-279. https://doi.org/10.1007/s11467-008-0028-9   DOI
37 Kim, C.E., Soon, A. and Stampfl, C. (2016), "Unraveling the origins of conduction band valley degeneracies in $Mg_2Si_{1-x}Sn_x$ thermoelectrics", Phys. Chem. Chem. Phys., 18(2), 939-946. https://doi.org/10.1039/C5CP06163F   DOI
38 Kitagawa, H., Kurata, A., Araki, H., Morito, S. and Tanabe, E. (2010), "Effect of Deformation Temperature on Texture and Thermoelectric Properties of $Bi_{0.5}Sb_{1.5}Te_3$ Prepared by Hot-Press Deformation", J. Electron. Mater., 39, 1692-1695. https://doi.org/10.1007/s11664-010-1181-9   DOI
39 Lee, D.H., Lee, J.U., Jung, S.J., Baek, S.H., Kim, J.H., Kim, D.I., Hyun, D.B. and Kim, J.S. (2014), "Effect of heat treatment on the thermoelectric properties of Bismuth-Antimony-Telluride prepared by mechanical deformation and mechanical alloying", J. Electron. Mater., 43, 2255-2261. https://doi.org/10.1007/s11664-014-3037-1   DOI
40 Liu, H., Chen, Y., Tang, Y., Wei, S. and Niu, G. (2007), "The microstructure, tensile properties and creep behaviour of as-cast Mg-(1-10) %Sn alloys", J. Alloys Compd., 440(1-2), 122-126. https://doi.org/10.1016/j.jallcom.2006.09.024   DOI
41 Lu, H., Wang, C.A., Huang, Y. and Xie, H. (2014), "Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics", Sci. Rep., 4, 6823. https://doi.org/10.1038/srep06823   DOI
42 Macario, L.R., Cheng, X., Ramirez, D., Mori, T. and Kleinke, H. (2018), "Thermoelectric properties of Bidoped magnesium silicide stannides", ACS Appl. Mater. Inter., 10(47), 40585-40591. https://doi.org/10.1021/acsami.8b15111   DOI
43 Mark, B. (2013), "Remarkable magnesium: the 21st century structural alloy for small components", FisherCast Global Corporation.
44 Mezbahul-Islam, M., Mostafa, A.O. and Medraj, M. (2014), "Essential magnesium alloys binary phase diagrams and their thermochemical data", J. Mater., 2014, 1-33. https://doi.org/10.1155/2014/704283   DOI