DOI QR코드

DOI QR Code

Process Development for Enhancement of High Temperature Thermoelectric Properties in a p-Type Skutterudite

P-형 Skutterudite 소재의 고온 열전물성 제어를 위한 공정 개발

  • Liu, Peng Ju (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Nou, Chang Wan (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 류붕거 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 노창완 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 최순목 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2020.08.10
  • Accepted : 2020.08.24
  • Published : 2020.11.01

Abstract

Power factor improvement at high temperatures has been a major research topic for the development of skutterudite thermoelectric materials. Here, we attempted to optimize the process parameters for manufacturing skutterudite materials, especially for p-type systems. We focused on the effect of aging time variation to maximize the high-temperature performance of the Ce-filled Fe3CoSb12 skutterudite system. The optimized aging time was concluded to be a key parameter for the formation of single-phase nanostructures in this p-type skutterudite system. The optimized condition was effective in reducing the bipolar effect at high temperature ranges by increasing the carrier concentration in the p-type system. To confirm the conclusions, the electrical conductivity, Seebeck coefficient, and power factor were measured. The results matched well with the microstructure and with those of an XRD analysis performed for the system.

Keywords

References

  1. G. S. Nolas, G. A. Slack, and S. B. Schujman, Semicond. Semimetals, 69, 255 (2001). [DOI: https://doi.org/10.1016/S0080-8784(01)80152-6]
  2. G. S. Nolas, D. T. Morelli, and T. M. Tritt, Ann. Rev. Mater. Sci., 29, 89 (1999). [DOI: https://doi.org/10.1146/annurev.matsci.29.1.89]
  3. D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, USA, 1995) p. 22.
  4. G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher, J. Mater. Chem. A, 1, 12657 (2013). [DOI: https://doi.org/10.1039/C3TA13024J]
  5. G. Son, K. H. Lee, and S. M. Choi, J. Electron. Mater., 46, 2839 (2017). [DOI: https://doi.org/10.1007/s11664-016-4991-6]
  6. J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett., 90, 192111 (2007). [DOI: https://doi.org/10.1063/1.2737422]
  7. W. H. Nam, W. H. Shin, J. Y. Cho, and W. S. Seo, Ceramist, 22, 133 (2019). [DOI: https://doi.org/10.31613/ceramist.2019.22.2.04]
  8. K. H. Lee, J. Y. Kim, and S. M. Choi, J. Korean Ceram. Soc., 52, 1 (2015). [DOI: https://doi.org/10.4191/kcers.2015.52.1.1]
  9. K. H. Lee, S. H. Bae, and S. M. Choi, Materials, 13, 87 (2019). [DOI: https://doi.org/10.3390/ma13010087]
  10. G. S. Son and S. M. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 671 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.11.671]
  11. G. Son, K. H. Lee, H. W. Park, A. Caron, I. H. Kim, S. Lee, and S. M. Choi, J. Alloys Compd., 729, 1209 (2017). [DOI: https://doi.org/10.1016/j.jallcom.2017.09.207]
  12. J. K. Lee, J. W. Kim, and J. Lee, Appl. Chem. Eng., 27, 353 (2016). [DOI: https://doi.org/10.14478/ace.2016.1064]
  13. W. H. Nam, W. H. Shin, J. Y. Cho, and W. S. Seo, Ceramist, 22, 133 (2019). [DOI: https://doi.org/10.31613/ceramist.2019.22.2.04]
  14. M. D. Yoo, Ph. D. Thesis, p. 73-78, Seoul National University, Seoul (2016).
  15. C. H. Pai, J. Korean Acad.-Ind. Coop. Soc., 14, 1883 (2013). [DOI: https://doi.org/10.5762/KAIS.2013.14.4.1883]