Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.4.208

Variations of the Thermoelectric Characteristics of ZnO Nanofibers from the Use of a Thermal Treatment  

Park, Yoonbeom (Department of Electrical Engineering, Korea University)
Cho, Kyoungah (Department of Electrical Engineering, Korea University)
Lee, Donghoon (Department of Electrical Engineering, Korea University)
Kim, Sangsig (Department of Electrical Engineering, Korea University)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.4, 2016 , pp. 208-211 More about this Journal
Abstract
In this study, thermal-treatment-derived variations of the thermoelectric characteristics of ZnO nanofibers (NFs) are examined. NFs that were prepared by electrospinning were transformed into n-type ZnO NFs after they were exposed to thermal heating for 30 min at 550℃. For the ZnO NFs, the Seebeck coefficient decreased from - 132.1 μV/K to - 44.6 μV/K over the heating-time range of 30 min to 120 min, while the electrical conductivity increased from 2.07 × 10-3 S/m to 0.18 S/m.
Keywords
ZnO; Thermoelectric; Sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan, Chem. Mater., 19, 3506 (2007). [DOI: http://dx.doi.org/10.1021/cm070280i]   DOI
2 H. Wu and W. Pan, J. Am. Ceram. Soc., 89, 699 (2006). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2005.00735.x]   DOI
3 F. Ma, Y. Ou, Y. Yang, Y. Liu, S. Xie, J. F. Li, G. Cao, R. Proksch, and J. Li, J. Phys. Chem. C, 114, 22038 (2010). [DOI: http://dx.doi.org/10.1021/jp107488k]   DOI
4 Z. M. Huanga, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003). [DOI: http://dx.doi.org/10.1016/S0266-3538(03)00178-7]   DOI
5 M. Zhang, H. Park, J. Kim, H. Park, T. Wu, S. Kim, S. D. Park, Y. Choa, and N. V. Myung, Chem. Mater., 27, 5189 (2015). [DOI: http://dx.doi.org/10.1021/acs.chemmater.5b00960]   DOI
6 S. Kocyigit, A. Aytimur, E. Cinar, I. Uslu, A. Akdemir, JOM, 66, 30 (2014). [DOI: http://dx.doi.org/10.1007/s11837-013-0822-x]   DOI
7 D. Lee, K. Cho, J. Choi, and S. Kim, Mater. Lett., 142, 250 (2015). [DOI: http://dx.doi.org/10.1016/j.matlet.2014.12.029]   DOI
8 T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J. F. Li, and J. Li, J. Phys. Chem. C, 114, 10061 (2010). [DOI: http://dx.doi.org/10.1021/jp1024872]   DOI
9 S. Maensiri and W. Nuansing, Mater. Chem. Phys., 99, 104 (2006). [DOI: http://dx.doi.org/10.1016/j.matchemphys.2005.10.004]   DOI
10 W. Xu, Y. Shi, and H. Hadim, Nanotechnology, 21, 395303 (2010). [DOI: http://dx.doi.org/10.1088/0957-4484/21/39/395303]   DOI
11 S. S. Mali, H. Kim, W. Y. Jang, H. S. Park, P. S. Patil, and C. K. Hong, ACS Sustainable Chem. Eng., 1, 1207 (2013). [DOI: http://dx.doi.org/10.1021/sc400153j]   DOI
12 R. Koc and H. U. Anderson, J. Mater. Sci., 27, 5477 (1992). [DOI: http://dx.doi.org/10.1007/BF00541609]   DOI
13 A. Laforgue and L. Robitaille, Synth. Met., 158, 577 (2008). [DOI: http://dx.doi.org/10.1016/j.synthmet.2008.04.004]   DOI
14 I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, Synth. Met., 144, 109 (2000). [DOI: http://dx.doi.org/10.1016/S0379-6779(00)00217-4]   DOI
15 N. Mateeva, H. Niculescu, J. Schlenoff, and L. R. Testardi, J. Appl. Phys., 83, 3111 (1998). [DOI: http://dx.doi.org/10.1063/1.367119]   DOI