Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.6.495

Process Development for Enhancement of High Temperature Thermoelectric Properties in a p-Type Skutterudite  

Liu, Peng Ju (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Nou, Chang Wan (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.6, 2020 , pp. 495-499 More about this Journal
Abstract
Power factor improvement at high temperatures has been a major research topic for the development of skutterudite thermoelectric materials. Here, we attempted to optimize the process parameters for manufacturing skutterudite materials, especially for p-type systems. We focused on the effect of aging time variation to maximize the high-temperature performance of the Ce-filled Fe3CoSb12 skutterudite system. The optimized aging time was concluded to be a key parameter for the formation of single-phase nanostructures in this p-type skutterudite system. The optimized condition was effective in reducing the bipolar effect at high temperature ranges by increasing the carrier concentration in the p-type system. To confirm the conclusions, the electrical conductivity, Seebeck coefficient, and power factor were measured. The results matched well with the microstructure and with those of an XRD analysis performed for the system.
Keywords
Thermoelectric; Skutterudite; Aging; p-type; Nano structure;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 G. S. Nolas, D. T. Morelli, and T. M. Tritt, Ann. Rev. Mater. Sci., 29, 89 (1999). [DOI: https://doi.org/10.1146/annurev.matsci.29.1.89]   DOI
2 D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, USA, 1995) p. 22.
3 G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher, J. Mater. Chem. A, 1, 12657 (2013). [DOI: https://doi.org/10.1039/C3TA13024J]   DOI
4 G. Son, K. H. Lee, and S. M. Choi, J. Electron. Mater., 46, 2839 (2017). [DOI: https://doi.org/10.1007/s11664-016-4991-6]   DOI
5 J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett., 90, 192111 (2007). [DOI: https://doi.org/10.1063/1.2737422]   DOI
6 W. H. Nam, W. H. Shin, J. Y. Cho, and W. S. Seo, Ceramist, 22, 133 (2019). [DOI: https://doi.org/10.31613/ceramist.2019.22.2.04]   DOI
7 K. H. Lee, J. Y. Kim, and S. M. Choi, J. Korean Ceram. Soc., 52, 1 (2015). [DOI: https://doi.org/10.4191/kcers.2015.52.1.1]   DOI
8 K. H. Lee, S. H. Bae, and S. M. Choi, Materials, 13, 87 (2019). [DOI: https://doi.org/10.3390/ma13010087]   DOI
9 G. S. Son and S. M. Choi, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 671 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.11.671]   DOI
10 G. S. Nolas, G. A. Slack, and S. B. Schujman, Semicond. Semimetals, 69, 255 (2001). [DOI: https://doi.org/10.1016/S0080-8784(01)80152-6]   DOI
11 G. Son, K. H. Lee, H. W. Park, A. Caron, I. H. Kim, S. Lee, and S. M. Choi, J. Alloys Compd., 729, 1209 (2017). [DOI: https://doi.org/10.1016/j.jallcom.2017.09.207]   DOI
12 J. K. Lee, J. W. Kim, and J. Lee, Appl. Chem. Eng., 27, 353 (2016). [DOI: https://doi.org/10.14478/ace.2016.1064]   DOI
13 W. H. Nam, W. H. Shin, J. Y. Cho, and W. S. Seo, Ceramist, 22, 133 (2019). [DOI: https://doi.org/10.31613/ceramist.2019.22.2.04]   DOI
14 M. D. Yoo, Ph. D. Thesis, p. 73-78, Seoul National University, Seoul (2016).
15 C. H. Pai, J. Korean Acad.-Ind. Coop. Soc., 14, 1883 (2013). [DOI: https://doi.org/10.5762/KAIS.2013.14.4.1883]