• Title/Summary/Keyword: thermal vapor deposition

Search Result 539, Processing Time 0.166 seconds

A Study of Boundary and Surface on SnO2 Thin Films Grown by Different Oxygen Flow Gas (변화된 산소분압으로 증착된 SnO2 박막의 표면과 계면에 관한 연구)

  • Oh, Seok-Kyun;Shin, Chul-Wha;Jeong, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1096-1100
    • /
    • 2008
  • This report examines the variations on structural properties of $SnO_2$ thin films deposited by using thermal chemical vapor deposition techniques with different oxygen flow gas. TEM showed some of the interface to be atomically rough. The aspects of the boundary shape and growth behavior agree well with the theory of interface growth. The electron diffraction showed that the roughness was changed as the different oxygen flow gas increased. These measurement results suggested that the number of interface facet and abnormal grain growth were related oxygen flow gas.

The preparation and characteristics of polyimide for applications as an insulation of semiconductor devices (반도체 소자의 절연막응용을 위한 폴리이미드 박막의 제작과 특성)

  • 김형권;이은학;박수홍;이백수;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.340-345
    • /
    • 1999
  • In this paper, polyimide thin films are fabricated by vapor deposition polymerization method appling to the interlayer insulator of semiconductor device, and are investigated in detail. It is found that the packing density and uniformity of films deposited by thermal evaporation are increased according to curing temperature. The resistivity, breakdown strength, relative permitivity, and dielectric loss are $3.2\tomes10^{15}\Omega$cm, 4.61 MV/cm, 2.9(10kHz) at $25^{\circ}C$, respectively. This thin films can be endured at $230^{\circ}C$ for 20,000 hours. Finally, we conclude that the thin films having the characteristics similar to those of $SiO_2$ can be used as an insulation films between layers of semiconductor device.

  • PDF

Plasmonic Effect on Graphene Metal Hybrid Films

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.468-468
    • /
    • 2013
  • Self-assembled silver nanoparticles were synthesized on a graphene film to investigate plasmonic effect. Graphene was synthesized on glass substrate using chemical vapor deposition method and transfer process. Silver nanoparticles were formed using thermal evaporator and post-annealing process. The shape of silver nanoparticles was measured using a scanning electron microscopy. The resonance wavelength of plasmonic effect on graphene-silver nanoparticles was measured using transmittance spectra. The plasmon resonance wavelength was increased from 400 nm to 424 nm according to the lateral dimension of silver nanoparticles. Also we confirmed a strong plasmon effect form Raman spectra, which were measured on graphene-silver nanoparticles. The result shows that plasmon resonance wavelength could be controlled by lateral dimension of silver nanoparticles, and transparent conductive films based on plasmonic graphene could be developed.

  • PDF

Photoluminescence in Carbon-doped GaAs Epilayers Grown on GaAs (311)A (GaAs (311)A 기판 위에 성장된 탄소 도핑된 GaAs 에피층의 광여기 발광)

  • 조신호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.208-213
    • /
    • 2002
  • We present the temperature and excitation power density dependence of the photoluminescence from carbon-doped GaAs epilayers grown on GaAs (311)A substrate by atmospheric pressure metalorganic chemical vapor deposition. The measured temperature dependence of the PL peak energy is well expressed by an empirical formula proposed by Varshni. The thermal quenching mechanism of the intensity of 16 K luminescence peak at 1.480 eV is described with the dominant activation energy of 27$\pm$2 meV. The activation energy shows an evidence that the emission band involves the carbon acceptor in the recombination process.

Synthesis and Characterization of Crosslinked Hole Transporting Polymers for Organic Light Emitting Diodes

  • Jang, Do-Young;Lim, Youn-Hee;Kim, Joo-Hyun;Kim, Jang-Joo;Shin, Jung-Hyu;Yoon, Do-Y.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.235-235
    • /
    • 2006
  • Triphenylamine derivatives play important roles as hole transporting materials in organic light emitting devices. However, low molecular weight triphenylamine derivatives show low glass transition temperature and aggregation behavior, and the vapor deposition step of low molecular weight materials is incompatible with large area display fabrication. Conventional polymer PEDOT-PSS HTL has serious drawbacks such as the ITO anode corrosion, poor surface energy match with aromatic EMLs. To solve these problems, we introduced crosslinkable units to triphenylamine-based polymers to make insoluble HTL by thermal curing following spin-coating. Electrochemical and optical properties of the new hole transporting materials were investigated. In addition, the device characteristics obtained with new hole transporting polymers were investigated in details.

  • PDF

Process Control for the Synthesis of Ultrafine Si3N4-SiC Powders by the Hybrid Plasma Processing (Hybrid Plasma Processing에 의한 Si3N4-SiC계 미립자의 합성과정 제어)

  • ;吉田禮
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.681-688
    • /
    • 1992
  • Ultrafine Si3N4 and Si3N4+SiC mixed powders were synthesized through thermal plasma chemical vapor deposition(CVD) using a hybrid plasma, which was characterized by the supersposition of a radio-frequency plasma and arc jet. The reactant SiCl4 was injected into an arc jet and completely decomposed in a hybrid plasma, and the second reactant CH4 and/or NH3 mixed with H2 were injected into the tail flame through double stage ring slits. In the case of ultrafine Si3N4 powder synthesis, reaction efficiency increased significantly by double stage injection compared to single stage one, although crystallizing behaviors depended upon injection speed of reactive quenching gas (NH3+N2) and injection method. For the preparation of Si2N4+SiC mixed powders, N/C composition ratio could be controlled by regulating the injection speed of NH3 and/or CH4 reactant and H2 quenching gas mixtures as well as by adjusting the reaction space.

  • PDF

Fabrication and Characteristics of CNT-FEAs with Under-gate Structure

  • Noh, Hyung-Wook;Jun, Pil-Goo;Ko, Sung-Woo;Kwak, Byung-Hwak;Park, Sang-Sik;Lee, Jong-Duk;Uh, Hyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1470-1473
    • /
    • 2005
  • We proposed new triode-type Field Emitter Arays using Carbon NanoTubes(CNT-FEAs) as electron emission sources at low electric fields. The CNTs were selectively grown on the patterned catalyst layer by Plasma-Enhanced Chemical Vapor Deposition (PECVD). In this structure, gate electrodes are located underneath the cathode electrodes and extracted gate is surrounded by CNT emitters. Furthermore, in order to control density of CNTs, we investigated effect of using rapid thermal annealing (RTA).

  • PDF

Temperature-dependent Morphology of Self-assembled InAs Quantum Dots Grown on Si Substrates (Si 기판 위에 형성된 InAs 양자점의 열처리에 의한 표면 상태의 변화)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.864-868
    • /
    • 2007
  • Effect of high-temperature annealing on morphology of fully coherent self-assembled InAs quantum dots' grown on Si (100) substrates at $450^{\circ}C$ by atmospheric pressure metalorganic chemical vapor deposition(APMOCVD) was investigated by atomic force microscopy(AFM). When the dots were annealed at 500 - 600$^{\circ}C$ for 15 sec - 60 min, there was no appreciable change in the dot density but the heights of the dots increased along with the reduction in the diameters. In segregation from the InAs quantum dots and/or from the 2-dimensional InAs wetting layer which was not transformed into quantum dots looked responsible for this change in the dot size. However the change rates remained almost same regardless of annealing time and temperature, which may indicate that the morphological change due to thermal annealing is done instantly when the dots are exposed to high temperature annealing.

The Charge Trapping Properties of ONO Dielectric Films (재산화된 질화산화막의 전하포획 특성)

  • 박광균;오환술;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.56-62
    • /
    • 1992
  • This paper is analyzed the charge trapping and electrical properties of 0(Oxide), NO(Nitrided oxide) and ONO(Reoxidized nitrided oxide) as dielectric films in MIS structures. We have processed bottom oxide and top oxide by the thermal method, and nitride(Si$_{3}N_{4}$) by the LPCVD(Low Pressure Chemical Vapor Deposition) method on P-type(100) Silicon wafer. We have studied the charge trapping properties of the dielectrics by using a computer controlled DLTS system. All of the dielectric films are shown peak nearly at 300K. Those are bulk traps. Many trap densities which is detected in NO films, but traps. Many trap densities which is detected in NO films. Varing the nitride thickness, the trap densities of thinner nitride is decreased than the thicker nitride. Finally we have found that trap densities of ONO films is affected by nitride thickness.

  • PDF

Characteristics of CNT Field Effect Transistor (탄소나노튜브 트랜지스터 특성 연구)

  • Park, Yong-Wook;Na, Sang-Yeob
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.1
    • /
    • pp.88-92
    • /
    • 2010
  • Bottom gate and top gate field-effect transistor based carbon nanotube(CNT) were fabricated by CMOS process. Carbon nanotube directly grown by thermal chemical vapor deposition(CVD) using Ethylene ($C_2H_4$) gas at $700^{\circ}C$. The growth properties of CNTs on the device were analyzed by SEM and AFM. The electrical transport characteristics of CNT FET were investigated by I-V measurement. Transport through the nanotubes is dominated by holes at room temperature. By varying the gate voltage, bottom gate and top gate field-effect transistor successfully modulated the conductance of FET device.