• 제목/요약/키워드: thermal diffusion

검색결과 937건 처리시간 0.024초

전자부품 커넥터의 접속 신뢰성 향상을 위한 Au-Sn 합금 도금층 연구 (A study on Au-Sn alloy plating layer improving reliability of electrical contacts)

  • 최종환;손인준
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.408-416
    • /
    • 2022
  • In this study, the effect of Au-Sn alloy coating on reliability of electrical contacts was investigated via comparison with Au-Co alloy coating. The results show that Au-Sn alloy exhibited lower contact resistance and higher solder spreadability than those of Au-Co alloy after thermal aging. In the case of Au-Co alloy plating, the underlying Ni element diffused into Au-Co layer to form Ni oxides on surface during thermal aging, leading to increased contact resistance and decreased solder spreadability. Meanwhile, for Au-Sn alloy plating, Au-Ni-Sn metallic compound was formed at the interface between Au-Sn layer and underlying Ni layer. This compound acted as a diffusion barrier, thereby inhibiting the diffusion of Ni to Au-Sn layer during thermal aging. Consequently, Au-Sn alloy layer showed better contact reliability than that of Au-Co alloy layer.

접촉 열저항 효과를 이용한 피로균열의 적외선검사 (Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance)

  • 양승용;김노유
    • 비파괴검사학회지
    • /
    • 제33권2호
    • /
    • pp.187-192
    • /
    • 2013
  • 크랙 계면에서의 접촉 열저항에 의해 만들어지는 온도 강하 특성을 적외선을 이용하여 측정함으로써 피로균열을 검사하였다. 크랙과 같은 불연속면을 지나는 열 유동은 연속체에서와는 달리 접촉경계면에서 급격한 온도구배를 나타내는데 이 변화를 표면에서의 적외선 방사량으로 측정하여 피로균열의 위치를 탐지하였다. 표준 피로균열 시편의 중앙부에 노치를 생성한 후 저주기 피로균열을 노치 끝단으로부터 발생시킨 다음, 이 시편의 한쪽 끝단에 할로겐램프를 이용하여 일정한 열을 가함으로서 시편의 길이 방향으로 열 유동이 일어나도록 하면서 시편의 표면온도 분포를 적외선 실험장치로 계측하였다. 열 유동이 크랙을 지나면서 온도구배가 크게 변화하는 것을 적외선 열화상 이미지로부터 알 수 있었으며 균열 면에서의 적외선 온도 데이터로부터 크랙의 위치와 크기를 평가할 수 있음을 실험적으로 확인하였다.

전력용 반도체소자(IGBT)의 모델링에 의한 열적특성 시뮬레이션 (Modeling and Thermal Characteristic Simulation of Power Semiconductor Device (IGBT))

  • 서영수;백동현;조문택
    • 한국화재소방학회논문지
    • /
    • 제10권2호
    • /
    • pp.28-39
    • /
    • 1996
  • A recently developed electro-thermal simulation methodology is used to analyze the behavior of a PWM(Pulse-Width-Modulated) voltage source inverter which uses IGBT(Insulated Gate Bipolar Transistor) as the switching devices. In the electro-thermal network simulation methdology, the simulator solves for the temperature distribution within the power semiconductor devices(IGBT electro-thermal model), control logic circuitry, the IGBT gate drivers, the thermal network component models for the power silicon chips, package, and heat sinks as well as the current and voltage within the electrical network. The thermal network describes the flow of heat form the chip surface through the package and heat sink and thus determines the evolution of the chip surface temperature used by the power semiconductor device models. The thermal component model for the device silicon chip, packages, and heat sink are developed by discretizing the nonlinear heat diffusion equation and are represented in component from so that the thermal component models for various package and heat sink can be readily connected to on another to form the thermal network.

  • PDF

탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향 (The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length)

  • 홍순규;이형우
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.248-253
    • /
    • 2017
  • In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

다공성 흑연의 기공내부로 침투하는 Si 증발입자의 확산 (Diffusion of Si Vapor Infiltrating into Porous Graphite)

  • 박장식;황정태
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.104-109
    • /
    • 2016
  • Graphite's thermal stability facilitates its widespread use as crucibles and molds in high temperatures processes. However, carbon atoms can be rather easily detached from pores and outer surfaces of the graphite due to the weak molecular force of the c axis of graphites. Detached carbon atoms are known to become a source of dust during fabrication processes, eventually lowering the effective yield of products. As an effort to reduce these problems of dust scattering, we have fabricated SiC composites by employing Si vapor infiltration method into the pores of graphites. In order to understand the diffusion process of the Si vapor infiltration, Si and C atomic percentages of fabricated SiC composites are carefully measured and the diffusion law is used to estimate the diffusion coefficient of Si vapor. A quadratic equation is obtained from the experimental results using the least square method. Diffusion coefficient of Si vapor is estimated using this quadratic equation. The result shows that the diffusion length obtained through the Si vapor infiltration method is about 10.7 times longer than that obtained using liquid Si and clearly demonstrates the usefulness of the present method.

N-type 고효율 태양전지용 Boron Diffused Layer의 형성 방법 및 특성 분석 (Boron Diffused Layer Formation Process and Characteristics for High Efficiency N-type Crystalline Silicon Solar Cell Applications)

  • 심경배;박철민;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제30권3호
    • /
    • pp.139-143
    • /
    • 2017
  • N-type crystalline silicon solar cells have high metal impurity tolerance and higher minority carrier lifetime that increases conversion efficiency. However, junction quality between the boron diffused layer and the n-type substrate is more important for increased efficiency. In this paper, the current status and prospects for boron diffused layers in N-type crystalline silicon solar cell applications are described. Boron diffused layer formation methods (thermal diffusion and co-diffusion using $a-SiO_X:B$), boron rich layer (BRL) and boron silicate glass (BSG) reactions, and analysis of the effects to improve junction characteristics are discussed. In-situ oxidation is performed to remove the boron rich layer. The oxidation process after diffusion shows a lower B-O peak than before the Oxidation process was changed into $SiO_2$ phase by FTIR and BRL. The $a-SiO_X:B$ layer is deposited by PECVD using $SiH_4$, $B_2H_6$, $H_2$, $CO_2$ gases in N-type wafer and annealed by thermal tube furnace for performing the P+ layer. MCLT (minority carrier lifetime) is improved by increasing $SiH_4$ and $B_2H_6$. When $a-SiO_X:B$ is removed, the Si-O peak decreases and the B-H peak declines a little, but MCLT is improved by hydrogen passivated inactive boron atoms. In this paper, we focused on the boron emitter for N-type crystalline solar cells.

Measurement of Thermal Diffusivity Using Deformation Gradient and Phase in the Photothermal Displacement Technique

  • Pilsoo Jeon;Lee, Kwangjai;Jaisuk Yoo;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2078-2086
    • /
    • 2003
  • As technology advances with development of new materials, it is important to measure the thermal diffusivity of material and to predict the heat transfer in the solid subject to thermal processes. The measurement of thermal properties can be done in a non-contact way using photothermal displacement spectroscopy. In this work, the thermal diffusivity was measured by analyzing the magnitude and phase of deformation gradient. We proposed a new data analysis method based on the real part of deformation gradient as the pump-probe offset value. As the result, compared with the literature value, the measured thermal diffusivities of materials showed about 3 % error.

고속 열확산 공정에 의해 형성된 Phosphorus Source/Drain을 갖는 NMOS 트랜지스터의 특성 (Characteristics of NMOS Transistors with Phosphorus Source/Drain Formed by Rapid Thermal Diffusion)

  • 조병진;김정규;김충기
    • 대한전자공학회논문지
    • /
    • 제27권9호
    • /
    • pp.1409-1418
    • /
    • 1990
  • Characteristics of NMOS transistors with phosphorus source/drain junctions formed by two-step rapid thermal diffusion (RTD) process using a solid diffusion source have been investigated. Phosphorus profiles after RTD were measured by SIMS analysis. In the case of 1100\ulcorner, 10sec RTD of, P, the specific contact resistance of n+ Si-Al was 2.4x10**-7 \ulcorner-cm\ulcorner which is 1/5 of the As junction The comparison fo P junction devices formed by RTD and conventional As junction devices shows that both short channel effect and hot carrier effect of P junction devices are smaller than those of As junction devices when the devices have same junction depths. P junction device had maximum of 0.4 times lower Isub/Id than As junction device. Characteristics of P junction formed by several different RTD conditions have been compared and 1000\ulcorner RTD sample had the smaller hot carrier generation. Also, it has been shown that the hot carrier generation can be futher reduced by forming the P junctions by 3-step RTD which has RTO-driven-in process additionally.

  • PDF

THE FABRICATION OF A PROCESS HEAT EXCHANGER FOR A SO3 DECOMPOSER USING SURFACE-MODIFIED HASTELLOY X MATERIALS

  • Park, Jae-Won;Kim, Hyung-Jin;Kim, Yong-Wan
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.233-238
    • /
    • 2008
  • This study investigates the surface modification of a Hastelloy X plate and diffusion bonding in the assembly of surface modified plates. These types of plates are involved in the key processes in the fabrication of a process heat exchanger (PHE) for a $SO_3$ decomposer. Strong adhesion of a SiC film deposited onto Hastelloy X can be achieved by a thin SiC film deposition and a subsequent N ion beam bombardment followed by an additional deposition of a thicker film that prevents the Hastelloy X surface from becoming exposed to a corrosive environment through the pores. This process not only produces higher corrosion resistance as proved by electrolytic etching but also exhibits higher endurance against thermal stress above 9$900^{\circ}C$. A process for a good bonding between Hastelloy X sheets, which is essential for a good heat exchanger, was developed by diffusion bonding. The diffusion bonding was done by mechanically clamping the sheets under a heat treatment at $900^{\circ}C$. When the clamping jig consisted of materials with a thermal expansion coefficient that was equal to or less than that of the Hastelloy X, sound bonding was achieved.

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • 한국표면공학회지
    • /
    • 제23권3호
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF