DOI QR코드

DOI QR Code

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length

탄소나노튜브 길이 변화에 대한 확산방지층과 박막 증착 온도의 영향

  • Hong, Soon-kyu (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Hyung Woo (Department of Nano Fusion Technology, Pusan National University)
  • 홍순규 (부산대학교 나노융합기술학과) ;
  • 이형우 (부산대학교 나노융합기술학과)
  • Received : 2017.06.12
  • Accepted : 2017.06.19
  • Published : 2017.06.28

Abstract

In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

Keywords

References

  1. S. Iijima: Nature, 354 (1991) 56 https://doi.org/10.1038/354056a0
  2. Y. Lan, Y. Wang and Z. F. Ren: Adv. Phys., 60 (2011) 553. https://doi.org/10.1080/00018732.2011.599963
  3. M. Terrones, N. Grobert, J. Olivers, J. P. Zhang, H. Terrone, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto and D. R. M. Walton: Nature, 388 (1997) 52. https://doi.org/10.1038/40369
  4. C. J. Lee, J. H. Park, Y. Huh and J. Y. Lee: Chem. Phys. Lett., 343 (2001) 33. https://doi.org/10.1016/S0009-2614(01)00680-7
  5. M. Meyyappan, L. Delzeit, A. Cassell and D. Hash: Plasma Sources Sci. Tech., 12 (2003) 205. https://doi.org/10.1088/0963-0252/12/2/312
  6. V. N. Popov: Mater. Sci. Eng. R-Rep., 43 (2004) 61. https://doi.org/10.1016/j.mser.2003.10.001
  7. W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro and D. Ugarte: Science, 268 (1995) 845. https://doi.org/10.1126/science.268.5212.845
  8. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi and F. Okuyama: Appl. Phys. Lett., 78 (2001) 2578. https://doi.org/10.1063/1.1367278
  9. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai: Science, 287 (2000) 622. https://doi.org/10.1126/science.287.5453.622
  10. H. Pan, J. Li and Y. P. Feng: Nanoscale Res. Lett., 5 (2010) 654. https://doi.org/10.1007/s11671-009-9508-2
  11. E. Frackowiaka and F. Beguin: Carbon, 39 (2001) 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  12. E. T. Thostensona, Z. Renb and T. W. Chou: Compos. Sci. Technol., 61 (2001) 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
  13. B. Corry: J. Phys. Chem. B, 112 (2008) 1427. https://doi.org/10.1021/jp709845u
  14. J. Yun, W. Jeon, F. Alam Khan, J. Lee and S. Baik: Nanotechnology, 26 (2015) 235701. https://doi.org/10.1088/0957-4484/26/23/235701
  15. Q. Zhang, D. G. Wang, J. Q. Huang, W. P. Zhou, G. H. Luo, W. Z. Qian and F. Wei: Carbon, 48 (2010) 2855. https://doi.org/10.1016/j.carbon.2010.04.017
  16. S. Chakrabarti, H. Kume, L. Pan, T. Nagasaka and Y. Nakayama: J. Phys. Chem. C, 111 (2007) 1929. https://doi.org/10.1021/jp0666986
  17. Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seeling and R. P. H. Chang: Appl. Phys. Lett., 72 (1998) 2912. https://doi.org/10.1063/1.121493