Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.6.408

A study on Au-Sn alloy plating layer improving reliability of electrical contacts  

Choi, Jong Hwan (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.6, 2022 , pp. 408-416 More about this Journal
Abstract
In this study, the effect of Au-Sn alloy coating on reliability of electrical contacts was investigated via comparison with Au-Co alloy coating. The results show that Au-Sn alloy exhibited lower contact resistance and higher solder spreadability than those of Au-Co alloy after thermal aging. In the case of Au-Co alloy plating, the underlying Ni element diffused into Au-Co layer to form Ni oxides on surface during thermal aging, leading to increased contact resistance and decreased solder spreadability. Meanwhile, for Au-Sn alloy plating, Au-Ni-Sn metallic compound was formed at the interface between Au-Sn layer and underlying Ni layer. This compound acted as a diffusion barrier, thereby inhibiting the diffusion of Ni to Au-Sn layer during thermal aging. Consequently, Au-Sn alloy layer showed better contact reliability than that of Au-Co alloy layer.
Keywords
Au-Sn alloy plating; Au alloy plating; Contact resistance; Connection reliability; Thermal aging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. S. Back, H. K. Chang, H. C. Kim, Properties of the gold and palladium-nickel alloy plated layers on electrical contact materials, J.Sur. Sci. Eng., 25(3) (1992) 107-115.
2 I. R. Christie, B. P. Cameron, Gold electrodeposition within the electronics industry, Gold Bulletin,27(1) (1994) 12-20.   DOI
3 H. Angerer, N. Ibl, On the electrodeposition of hard gold, J. Appl. Electrochem., 9(2) (1979) 219-232.   DOI
4 J. W. Lee, I. J Son, Effect of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers, J.Sur. Sci. Eng., 46(6) (2013) 235-241.
5 M. Antler, Contact resistance of oxidized metals: dependence on the mating material, IEEE Trans Components, Hybrids Manuf. Technol., 10(3) (1987) 420-424.   DOI
6 M. R. Pinnel, H. G. Tompkins, D. E. Heath, Oxidation kinetics of copper from gold alloy solution at 50°-150℃, J. Electrochem. Soc.,126(10) (1979) 1798-1805.   DOI
7 M. Antler, Gold plated contacts: fect of substrate roughness on reliability, Plating, 56(10) (1969) 1139.
8 R. P. Netterfield, P. J. Martin, Nucleation and growth studies of gold films prepared by evaporation and ion-assisted deposition, Appl. Surf. Sci., 25(3) (1986) 265-278.   DOI
9 Y. Okinaka, M. Hoshino, Some recent topics in gold plating for electronics applications, Gold Bulletin, 31(1) (1998) 3-13.   DOI
10 H. G. Tompkins, M. R. Pinnel, Relative rates of nickel diffusion and copper diffusion through gold, J. Appl. Phys., 48(7) (1977) 3144-3146.   DOI
11 M. Antler, Gold plated contacts: effect of thermal aging on contact resistance. in Electrical Contacts-1997 Proceedings of the Forty-Third IEEE Holm Conference on Electrical Contacts. IEEE., (1997) 121-131.
12 H. Kumakura, M. Sekiguchi, Increase in contact resistance of hard gold plating during thermal aging--nickel-hardened gold and cobalt-hardened gold, IEICE Trans. Electron., 82(1) (1999) 13-18.
13 J. Ciulik, M. Notis, The Au-Sn phase diagram, J. Alloys Compd., 191(1) (1993) 71-78.   DOI
14 G. S. Matijasevic, C. C. Lee, C. Y. Wang, Au- Sn alloy phase diagram and properties related to its use as a bonding medium, Thin solid films, 223(2) (1993) 276-287.   DOI
15 S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water, J. Mol. Catal. A Chem., 281(1-2) (2008) 49-58.   DOI
16 J. G. Han, T. M. Kang, An investigation of charateristics of Au plating for telecommunication components, J.Sur. Sci. Eng., 25(6) (1992) 309-317.
17 O. Kurtz, J. Barthelmes, R. Ruther, M. Danker, Thermal aging of technical hard gold electrodeposits, Met. Finish., 109(5) (2011) 19-23.   DOI
18 T. E. Brady, C. T. Hovland, Scanning auger microprobe study of gold-nickel-copper diffusion in thin films, J. Vac. Sci. Technol., 18(2) (1981) 339-342.   DOI
19 M. R. Pinnel, H. G. Tompkins, D. E. Heath, Oxidation of nickel and nickel-gold alloys in air at 50°-150℃, J. Electrochem. Soc, 126(7) (1979) 1274-1281.   DOI
20 A. Kaoru, JPS series alloy plating II Au alloy plating2, Japan Plating Association, Tokyo, (2003) 142-177.
21 P. Goodman, Current and future uses of gold in electronics, Gold Bulletin, 35(1) (2002) 21-26.   DOI
22 M. Liew, S. Roy, K. Scott, Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at University of Newcastle upon Tyne,Green Chemistry, 5(4) (2003) 376-381.   DOI
23 S. Anhock, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, H. Reichl, Investigations of Au-Sn alloys on different end-metallizations for high temperature applications [solders], in Twenty Second IEEE/CPMT International Electronics Manufacturing Technology Symposium. IEMT-Europe 1998. Electronics Manufacturing and Development for Automotives (Cat. No. 98CH36204). IEEE., (1998) 156-165.