DOI QR코드

DOI QR Code

A study on Au-Sn alloy plating layer improving reliability of electrical contacts

전자부품 커넥터의 접속 신뢰성 향상을 위한 Au-Sn 합금 도금층 연구

  • Choi, Jong Hwan (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Son, Injoon (Department of Materials Science and Metallurgical Engineering, Kyungpook National University)
  • 최종환 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 손인준 (경북대학교 신소재공학부 금속신소재공학전공)
  • Received : 2022.12.15
  • Accepted : 2022.12.18
  • Published : 2022.12.31

Abstract

In this study, the effect of Au-Sn alloy coating on reliability of electrical contacts was investigated via comparison with Au-Co alloy coating. The results show that Au-Sn alloy exhibited lower contact resistance and higher solder spreadability than those of Au-Co alloy after thermal aging. In the case of Au-Co alloy plating, the underlying Ni element diffused into Au-Co layer to form Ni oxides on surface during thermal aging, leading to increased contact resistance and decreased solder spreadability. Meanwhile, for Au-Sn alloy plating, Au-Ni-Sn metallic compound was formed at the interface between Au-Sn layer and underlying Ni layer. This compound acted as a diffusion barrier, thereby inhibiting the diffusion of Ni to Au-Sn layer during thermal aging. Consequently, Au-Sn alloy layer showed better contact reliability than that of Au-Co alloy layer.

Keywords

References

  1. C. S. Back, H. K. Chang, H. C. Kim, Properties of the gold and palladium-nickel alloy plated layers on electrical contact materials, J.Sur. Sci. Eng., 25(3) (1992) 107-115.
  2. J. G. Han, T. M. Kang, An investigation of charateristics of Au plating for telecommunication components, J.Sur. Sci. Eng., 25(6) (1992) 309-317.
  3. P. Goodman, Current and future uses of gold in electronics, Gold Bulletin, 35(1) (2002) 21-26. https://doi.org/10.1007/BF03214833
  4. I. R. Christie, B. P. Cameron, Gold electrodeposition within the electronics industry, Gold Bulletin,27(1) (1994) 12-20. https://doi.org/10.1007/BF03214728
  5. M. Liew, S. Roy, K. Scott, Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at University of Newcastle upon Tyne,Green Chemistry, 5(4) (2003) 376-381. https://doi.org/10.1039/b301176n
  6. H. Angerer, N. Ibl, On the electrodeposition of hard gold, J. Appl. Electrochem., 9(2) (1979) 219-232. https://doi.org/10.1007/BF00616092
  7. R. P. Netterfield, P. J. Martin, Nucleation and growth studies of gold films prepared by evaporation and ion-assisted deposition, Appl. Surf. Sci., 25(3) (1986) 265-278. https://doi.org/10.1016/0169-4332(86)90059-0
  8. J. W. Lee, I. J Son, Effect of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers, J.Sur. Sci. Eng., 46(6) (2013) 235-241.
  9. M. Antler, Contact resistance of oxidized metals: dependence on the mating material, IEEE Trans Components, Hybrids Manuf. Technol., 10(3) (1987) 420-424. https://doi.org/10.1109/TCHMT.1987.1134752
  10. Y. Okinaka, M. Hoshino, Some recent topics in gold plating for electronics applications, Gold Bulletin, 31(1) (1998) 3-13. https://doi.org/10.1007/bf03215469
  11. M. R. Pinnel, H. G. Tompkins, D. E. Heath, Oxidation kinetics of copper from gold alloy solution at 50°-150℃, J. Electrochem. Soc.,126(10) (1979) 1798-1805. https://doi.org/10.1149/1.2128800
  12. O. Kurtz, J. Barthelmes, R. Ruther, M. Danker, Thermal aging of technical hard gold electrodeposits, Met. Finish., 109(5) (2011) 19-23. https://doi.org/10.1016/S0026-0576(13)70005-9
  13. H. G. Tompkins, M. R. Pinnel, Relative rates of nickel diffusion and copper diffusion through gold, J. Appl. Phys., 48(7) (1977) 3144-3146. https://doi.org/10.1063/1.324045
  14. T. E. Brady, C. T. Hovland, Scanning auger microprobe study of gold-nickel-copper diffusion in thin films, J. Vac. Sci. Technol., 18(2) (1981) 339-342. https://doi.org/10.1116/1.570754
  15. M. R. Pinnel, H. G. Tompkins, D. E. Heath, Oxidation of nickel and nickel-gold alloys in air at 50°-150℃, J. Electrochem. Soc, 126(7) (1979) 1274-1281. https://doi.org/10.1149/1.2129256
  16. M. Antler, Gold plated contacts: fect of substrate roughness on reliability, Plating, 56(10) (1969) 1139.
  17. M. Antler, Gold plated contacts: effect of thermal aging on contact resistance. in Electrical Contacts-1997 Proceedings of the Forty-Third IEEE Holm Conference on Electrical Contacts. IEEE., (1997) 121-131.
  18. H. Kumakura, M. Sekiguchi, Increase in contact resistance of hard gold plating during thermal aging--nickel-hardened gold and cobalt-hardened gold, IEICE Trans. Electron., 82(1) (1999) 13-18.
  19. A. Kaoru, JPS series alloy plating II Au alloy plating2, Japan Plating Association, Tokyo, (2003) 142-177.
  20. J. Ciulik, M. Notis, The Au-Sn phase diagram, J. Alloys Compd., 191(1) (1993) 71-78. https://doi.org/10.1016/0925-8388(93)90273-P
  21. G. S. Matijasevic, C. C. Lee, C. Y. Wang, Au- Sn alloy phase diagram and properties related to its use as a bonding medium, Thin solid films, 223(2) (1993) 276-287. https://doi.org/10.1016/0040-6090(93)90533-U
  22. S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water, J. Mol. Catal. A Chem., 281(1-2) (2008) 49-58. https://doi.org/10.1016/j.molcata.2007.08.023
  23. S. Anhock, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, H. Reichl, Investigations of Au-Sn alloys on different end-metallizations for high temperature applications [solders], in Twenty Second IEEE/CPMT International Electronics Manufacturing Technology Symposium. IEMT-Europe 1998. Electronics Manufacturing and Development for Automotives (Cat. No. 98CH36204). IEEE., (1998) 156-165.