Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.3.248

The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length  

Hong, Soon-kyu (Department of Nano Fusion Technology, Pusan National University)
Lee, Hyung Woo (Department of Nano Fusion Technology, Pusan National University)
Publication Information
Journal of Powder Materials / v.24, no.3, 2017 , pp. 248-253 More about this Journal
Abstract
In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.
Keywords
Carbon nanotube; Diffusion barrier; Thin film deposition temperature; Bonding force;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Iijima: Nature, 354 (1991) 56   DOI
2 Y. Lan, Y. Wang and Z. F. Ren: Adv. Phys., 60 (2011) 553.   DOI
3 M. Terrones, N. Grobert, J. Olivers, J. P. Zhang, H. Terrone, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto and D. R. M. Walton: Nature, 388 (1997) 52.   DOI
4 M. Meyyappan, L. Delzeit, A. Cassell and D. Hash: Plasma Sources Sci. Tech., 12 (2003) 205.   DOI
5 V. N. Popov: Mater. Sci. Eng. R-Rep., 43 (2004) 61.   DOI
6 W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro and D. Ugarte: Science, 268 (1995) 845.   DOI
7 H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi and F. Okuyama: Appl. Phys. Lett., 78 (2001) 2578.   DOI
8 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho and H. Dai: Science, 287 (2000) 622.   DOI
9 H. Pan, J. Li and Y. P. Feng: Nanoscale Res. Lett., 5 (2010) 654.   DOI
10 E. Frackowiaka and F. Beguin: Carbon, 39 (2001) 937.   DOI
11 E. T. Thostensona, Z. Renb and T. W. Chou: Compos. Sci. Technol., 61 (2001) 1899.   DOI
12 B. Corry: J. Phys. Chem. B, 112 (2008) 1427.   DOI
13 C. J. Lee, J. H. Park, Y. Huh and J. Y. Lee: Chem. Phys. Lett., 343 (2001) 33.   DOI
14 J. Yun, W. Jeon, F. Alam Khan, J. Lee and S. Baik: Nanotechnology, 26 (2015) 235701.   DOI
15 Q. Zhang, D. G. Wang, J. Q. Huang, W. P. Zhou, G. H. Luo, W. Z. Qian and F. Wei: Carbon, 48 (2010) 2855.   DOI
16 S. Chakrabarti, H. Kume, L. Pan, T. Nagasaka and Y. Nakayama: J. Phys. Chem. C, 111 (2007) 1929.   DOI
17 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seeling and R. P. H. Chang: Appl. Phys. Lett., 72 (1998) 2912.   DOI