Browse > Article
http://dx.doi.org/10.5516/NET.2008.40.3.233

THE FABRICATION OF A PROCESS HEAT EXCHANGER FOR A SO3 DECOMPOSER USING SURFACE-MODIFIED HASTELLOY X MATERIALS  

Park, Jae-Won (Korea Atomic Energy Research Institute)
Kim, Hyung-Jin (Korea Atomic Energy Research Institute)
Kim, Yong-Wan (Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.40, no.3, 2008 , pp. 233-238 More about this Journal
Abstract
This study investigates the surface modification of a Hastelloy X plate and diffusion bonding in the assembly of surface modified plates. These types of plates are involved in the key processes in the fabrication of a process heat exchanger (PHE) for a $SO_3$ decomposer. Strong adhesion of a SiC film deposited onto Hastelloy X can be achieved by a thin SiC film deposition and a subsequent N ion beam bombardment followed by an additional deposition of a thicker film that prevents the Hastelloy X surface from becoming exposed to a corrosive environment through the pores. This process not only produces higher corrosion resistance as proved by electrolytic etching but also exhibits higher endurance against thermal stress above 9$900^{\circ}C$. A process for a good bonding between Hastelloy X sheets, which is essential for a good heat exchanger, was developed by diffusion bonding. The diffusion bonding was done by mechanically clamping the sheets under a heat treatment at $900^{\circ}C$. When the clamping jig consisted of materials with a thermal expansion coefficient that was equal to or less than that of the Hastelloy X, sound bonding was achieved.
Keywords
Nuclear Hydrogen Production; Coating; Ion Beam Mixing; Corrosion; Auger Electron Spectroscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. Sella, J. Lecoeur, Y. Sampeur, P. Catania, Surf. Coat. Technol. 60, 577 (1993)   DOI   ScienceOn
2 R. Nakatani, R. Taniguchi, Y. Chimi, N. Ishikawa, M. Fukuzumi, Y. Kato, H. Tsuchida, N. Matsunami, A. Iwase, Nucl. Inst. Meth. B 230, 234 (2005)   DOI   ScienceOn
3 Wolfgang Bolse, Mat. Sci. Eng. A, 253, 194 (1998)   DOI   ScienceOn
4 J.-P. Riviere, J. Delafond, P. Misaelides, F. Noli, Surf. Coat. Technol. 100-101, 243 (1998)   DOI   ScienceOn
5 K. Zhang, K. P. Lieb, V. Milinovic, M. Uhrmacher, S. Klaumuenzer, Nucl. Inst. Meth. B. , 249, 167 (2006)   DOI   ScienceOn
6 Jonghwa Chang*, Yong-Wan Kim, Ki-Young Lee, Young- Woo Lee, Won Jae Lee, Jae-Man Noh, Min-Hwan Kim, Hong-Sik Lim, Young-Joon Shin, Ki-Kwang Bae and Kwang-Deog Jung, Nuclear Engineering and Technology, 39 NO.2, 111-122 (2007)   과학기술학회마을   DOI
7 H. Ota, S. Kubo, M. Hodotsuka, T. Inatomi, M. Kobayashi, A. Terada, S. Kasahara, R. Hino, K. Ogura, S. Maruyama, Proceedings of the 13th International Conference on Nuclear Engineering, Beijing, China, May 16?20, 2005, 332, Icone-13-50494
8 J. F. Ziegler, J. P. Biersack, U. Littmark, 'The Stopping Range of Ion in Solids', Pergamon Press, New York, (1985)
9 J. W. Park, C. W. Sohn, B. H. Choi, Current Applied Physics, 6, 188 (2006)   DOI   ScienceOn
10 H. Uchida, M. Yamashita, S. Hanaki, T. Ueta, Mat. Sci. Eng. A 387, 758 (2004)   DOI   ScienceOn
11 J. L. Vossen, W. Kern, Thin Film Process, Academic Press, New York (1978)
12 A. Lacoste, S. Bechu, Y. Arnal, J. Pelletier, C. Vallee, R. Gouttebaron, J. P. Stoquert, Surf. Coat. Technol., 156, 125 (2002)   DOI   ScienceOn
13 S. Fujikawa, H. Hatashi, T. Nakazawa, K. Kawasaki, T. Iyoku, S. Nakagawa and N. Sakaba., J. Nucl. Sci. Technol., 41, 1245 (2004)   DOI   ScienceOn