DOI QR코드

DOI QR Code

Diffusion of Si Vapor Infiltrating into Porous Graphite

다공성 흑연의 기공내부로 침투하는 Si 증발입자의 확산

  • 박장식 (한국과학기술정보연구원 리시트 프로그램) ;
  • 황정태 (제너코트)
  • Received : 2016.02.01
  • Accepted : 2016.02.24
  • Published : 2016.02.29

Abstract

Graphite's thermal stability facilitates its widespread use as crucibles and molds in high temperatures processes. However, carbon atoms can be rather easily detached from pores and outer surfaces of the graphite due to the weak molecular force of the c axis of graphites. Detached carbon atoms are known to become a source of dust during fabrication processes, eventually lowering the effective yield of products. As an effort to reduce these problems of dust scattering, we have fabricated SiC composites by employing Si vapor infiltration method into the pores of graphites. In order to understand the diffusion process of the Si vapor infiltration, Si and C atomic percentages of fabricated SiC composites are carefully measured and the diffusion law is used to estimate the diffusion coefficient of Si vapor. A quadratic equation is obtained from the experimental results using the least square method. Diffusion coefficient of Si vapor is estimated using this quadratic equation. The result shows that the diffusion length obtained through the Si vapor infiltration method is about 10.7 times longer than that obtained using liquid Si and clearly demonstrates the usefulness of the present method.

Keywords

References

  1. D. G. Kim, H. S. Ha, I. S. Park, Y. S. Im, and B. I. Yun, Study on the Effects of High Temperature Heat Treatment on the Physical and Mechanical Properties of Carbon Fiber and Carbon Composites, Kor. J. Mater. Res., 4 (1994) 287-94.
  2. G. Y. Jo, G. J. Kim, and Y. J. Jeong, The Resin Impregnation with Silane Coupling on Graphite, J. Kor. Ceram. Soc., 40 (2003) 1021-26. https://doi.org/10.4191/KCERS.2003.40.10.1021
  3. T. H. Lee, Review of the Research and Development of Ceramic Matrix Composite Materials and Future Works, Composites Research, 27 (2014) 123-129. https://doi.org/10.7234/composres.2014.27.4.123
  4. S. Y. Kim, I. S. Han, S. K. Woo, K. S. Lee, D. K. Kim, Wear-Mechanical Properties of Filler-Added Liquid Silicon Infiltration C/C-SiC Composites, Mater. Des., 44 (2013)107-113. https://doi.org/10.1016/j.matdes.2012.07.064
  5. H. S. Kang, K.S. Kim, B.I. Yoon, and Y. S. Bae, Autoclave Processing of Thick Carbon-Phenolic Composites, J. Kor. Soc. Composite Materials, 8 (1995) 1-8.
  6. S. G. Hong, K. Y. Cho, O. H. Kwon, Y. S. Cho and S. J. Jang, High Pressure Curing of Phenol Resin for High Quality Coating of Glassy Carbon, J. Kor. Ceram. Soc., 48 (2011) 141-146. https://doi.org/10.4191/KCERS.2011.48.2.141
  7. E. Lopez-Honorato, P. J. Meadows, P. Xiao, G. Marsh, T. J. Abram, Structure and Mechanical Properties of Pyrolytic Carbon Produced by Fluidized Bed Chemical Vapor Deposition, Nucl. Eng. Design, 238 (2008) 3121-3128. https://doi.org/10.1016/j.nucengdes.2007.11.022
  8. K. Nakajima and N. Usami, Crystal Growth of Si for Solar Cells, Springer, Sendai (2009) 97-119.
  9. Y. N. Lee, B. Y. Jang, J. S. Lee, J. S. Kim, Y. S. Ahn and W. Y. Yoon, SiC Contaminations in Polycrystalline-Silicon Wafer Directly Grown from Si Melt for Photovoltaic Applications, Kor. Found. Soc., 23 (2013) 69-74.
  10. Popper P. Special ceramics, The Preparation of Dense Self-Bonded Silicon Carbide Bodies. London: Heywood; 1960.
  11. W. B. Hillig, R. Mehan, C. Morelock, V. DeCarlo, Silicon/Silicon Carbide Composites, Am. Ceram. Soc. Bull., 54 (1975)1054-56.
  12. E. Fitzer, R. Gadow, Silicon Carbide Fiber-Reinforced, Am. Ceram. Soc. Bull., 65 (1986) 326-335.
  13. D. Sun, X. Yu, W. Liu, D. Sun, Laminated Biomorphous SiC/Si Porous Ceramics Made from Wood Veneer, Materials and Design, 34 (2012) 528-532. https://doi.org/10.1016/j.matdes.2011.05.004
  14. S. H. Yun, P. N. Tan, G. S. Cho, H. Cheong, Y. D. Kim and S. W. Park, Fabrication of Carbon Fiber Reinforced Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method ; I. The Effect of Carbon Fiber Coating Process, J. Kor. Ceram. Soc., 45 (2008) 531-536. https://doi.org/10.4191/KCERS.2008.45.9.531
  15. P. Greil, T. Lifka and A. Kaindl, Biomorphic Cellular Silicon Carbide Ceramics from Wood: I. Processing and Microstructure, J. Euro. Ceram. Soc., 18 (1998) 1961-1973. https://doi.org/10.1016/S0955-2219(98)00156-3
  16. C. D. Shackelford, Laboratory Diffusion Testing for Waste Disposal-A review, J. Contam. Hydro., 7 (1991) 177-217. https://doi.org/10.1016/0169-7722(91)90028-Y
  17. E. Fitzer and R. Gadow, Fiber-Reinforced Silicon Carbide, Am. Ceram. Soc. Bull., 65 (1986) 326-35.
  18. Z. Yang, X. He, M. Wu, L. Zhang, A. Ma, R. Liu, H. Hu, Y. Zhang, X. Qu, Infiltration Mechanism of Diamond/SiC Composites Fabricated by Si-Vapor Vacuum Reactive Infiltration Process, J. Europ. Ceram. Soc., 33 (2013) 869-878. https://doi.org/10.1016/j.jeurceramsoc.2012.09.010