• Title/Summary/Keyword: the imaginary

Search Result 790, Processing Time 0.028 seconds

A Note on Synthesis of a Complex Coefficient BPF Based on a Real Coefficient BPF

  • Shouno, Kazuhiro;Ishibashi, Yukio
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.571-574
    • /
    • 2000
  • A complex coefficient filter obtained by directly exchanging several reactance elements included in a real coefficient, filter for imaginary valued resistors is described. By using the proposed method, four varieties of complex coefficient filter are obtained. The stability problem is described. Finally, the frequency responses of the proposed kiters are shown.

  • PDF

ANTI-CYCLOTOMIC EXTENSION AND HILBERT CLASS FIELD

  • Oh, Jangheon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.91-95
    • /
    • 2012
  • In this paper, we show how to construct the first layer $k^{\alpha}_{1}$ of anti-cyclotomic ${\mathbb{{Z}}}_{3}$-extension of imaginary quadratic fields $k(=\;{\mathbb{{Q}}}(\sqrt{-d}))$ when the Sylow subgroup of class group of k is 3-elementary, and give an example. This example is different from the one we obtained before in the sense that when we write $k^{\alpha}_{1}\;=\;k({\eta}),{\eta}$ is obtained from non-units of ${\mathbb{{Q}}}({\sqrt{3d}})$.

FORM CLASS GROUPS ISOMORPHIC TO THE GALOIS GROUPS OVER RING CLASS FIELDS

  • Yoon, Dong Sung
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.583-591
    • /
    • 2022
  • Let K be an imaginary quadratic field and 𝒪 be an order in K. Let H𝒪 be the ring class field of 𝒪. Furthermore, for a positive integer N, let K𝒪,N be the ray class field modulo N𝒪 of 𝒪. When the discriminant of 𝒪 is different from -3 and -4, we construct an extended form class group which is isomorphic to the Galois group Gal(K𝒪,N/H𝒪) and describe its Galois action on K𝒪,N in a concrete way.

Periodic Properties of a Lyapunov Functional of State Delay Systems

  • Young Soo Suh
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.92-96
    • /
    • 2002
  • This paper is concerned with properties of a Lyapunov functional of state delay systems. It is shown that if a state delay system has a pure imaginary pole for some state delay, then no Lyapunov functional satisfying a Lyapunov condition exists periodically with respect to change of the state delay. This periodic property is unique in state delay systems and has been well known in the frequency domain stability conditions. However, in the time domain stability conditions using a Lyapunov functional, the periodic property is not known explicitly.

  • PDF

A NOTE ON THE RANK 2 SYMMETRIC HYPERBOLIC KAC-MOODY ALGEBRAS

  • Kim, Yeon-Ok
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.107-113
    • /
    • 2010
  • In this paper, we study the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We give the sufficient conditions for existence of imaginary roots of square length -2k ($k\;{\in}\;\mathbb{Z}$>0). We also give several relations between the roots on g(A).

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 21 (mod 36)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.921-925
    • /
    • 2011
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}21$ (mod 36).

RAMANUJAN CONTINUED FRACTIONS OF ORDER EIGHTEEN

  • Yoon Kyung Park
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.395-406
    • /
    • 2023
  • As an analogy of the Rogers-Ramanujan continued fraction, we define a Ramanujan continued fraction of order eighteen. There are essentially three Ramanujan continued fractions of order eighteen, and we study them using the theory of modular functions. First, we prove that they are modular functions and find the relations with the Ramanujan cubic continued fraction C(𝜏). We can then obtain that their values are algebraic numbers. Finally, we evaluate them at some imaginary quadratic quantities.

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ -3 (mod 36)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.853-860
    • /
    • 2010
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}-3$ (mod 36).

GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

  • SHIN, DONG HWA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.907-928
    • /
    • 2015
  • We show in many cases that the Siegel-Ramachandra invariants generate the ray class fields over imaginary quadratic fields. As its application we revisit the class number one problem done by Heegner and Stark, and present a new proof by making use of inequality argument together with Shimura's reciprocity law.