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GENERATION OF CLASS FIELDS BY

SIEGEL-RAMACHANDRA INVARIANTS

Dong Hwa Shin

Abstract. We show in many cases that the Siegel-Ramachandra invari-
ants generate the ray class fields over imaginary quadratic fields. As
its application we revisit the class number one problem done by Heegner
and Stark, and present a new proof by making use of inequality argument
together with Shimura’s reciprocity law.

1. Introduction

Let K be an imaginary quadratic field with the ring of integers OK . For
a nontrivial ideal f of OK , we denote by Cl(f) the ray class group modulo f

and write C0 for its identity class. By class field theory there exists a unique
abelian extension Kf of K, called the ray class field modulo f, whose Galois
group is isomorphic to Cl(f) via the Artin reciprocity map [10, Chapter V]. In
particular, the ray class field modulo OK is called the Hilbert class field of K
and is simply written by HK .

For a rational pair [ r1r2 ] ∈ Q2\Z2, the Siegel function g[ r1r2 ]
(τ) on the complex

upper half-plane H = {τ ∈ C | Im(τ) > 0} is defined by

(1) g[ r1r2 ]
(τ) = −q(1/2)B2(r1)eπir2(r1−1)(1− qz)

∞
∏

n=1

(1− qnqz)(1− qnq−1
z ),

where B2(X) = X2 − X + 1/6 is the second Bernoulli polynomial, q = e2πiτ

and qz = e2πiz with z = r1τ+r2. It has neither zeros nor poles on H. If f 6= OK

and C ∈ Cl(f), then we take any integral ideal c in C and z1, z2 ∈ C such that
fc−1 = Zz1 + Zz2 and z = z1/z2 ∈ H. We then define the Siegel-Ramachandra
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invariant modulo f at C by

(2) gf(C) = g[ a/N
b/N

](z)12N ,

where N is the smallest positive integer in f and a, b are integers such that
1 = (a/N)z1 + (b/N)z2. This value depends only on the class C [12, Chapter
2, Remark to Theorem 1.2], and lies in Kf [12, Chapter 2, Proposition 1.3 and
Chapter 11, Theorem 1.1]. Furthermore, it satisfies the transformation formula

(3) gf(C1)
σ(C2) = gf(C1C2) (C1, C2 ∈ Cl(f)),

where σ is the Artin reciprocity map [12, pp. 235–236].
In 1964 Ramachandra [17, Theorem 10] first constructed a primitive gen-

erator of Kf over K for any f 6= OK , however, his invariant involves overly
complicated product of Siegel-Ramachandra invariants and the singular values
of the modular ∆-function. Thus, Lang [15, p. 292] and Schertz [20, p. 386]
conjectured that the simplest invariant gf(C0) would be a primitive generator
ofKf overK (or, overHK), and Schertz gave a conditional proof [20, Theorems
3 and 4].

In this paper we shall first show in §3 that when f = (N) for an integer
N (≥ 2), gf(C0) generates K(N) over HK for almost all imaginary quadratic
fields K (Theorem 3.3). We shall further develop a simple criterion for gf(C0)
to be a primitive generator of Kf over K when f is just a nontrivial ideal of
OK (Theorem 3.6 and Remark 3.7) by adopting Schertz’s idea. In §4 we shall
investigate some properties of Siegel-Ramachandra invariants modulo 2.

Gauss’ class number one problem for imaginary quadratic fields was first
solved by Heegner [9] in 1952. There was a gap in his proof which heavily relies
on the singular values of the Weber functions, however, few years later complete
proofs were found independently by Baker [1] and Stark [25]. Moreover, Stark
[25] finally filled up the supposed gap in Heegner’s proof. In §5 as an application
we shall introduce a new proof (Theorems 4.8 and 5.2) by using Siegel functions
and Stevenhagen’s explicit description of Shimura’s reciprocity law [26, §3, 6].

2. Preliminaries

First, we shall briefly review necessary basic properties of Siegel functions
and Shimura’s reciprocity law.

For a positive integer N let ζN = e2πi/N be a primitive N -th root of unity
and

Γ(N) = {γ ∈ SL2(Z) | γ ≡ I2 (mod N)}

be the principal congruence subgroup of level N of SL2(Z). Then its corre-
sponding modular curve of level N is denoted by X(N) = Γ(N)\(H ∪ P1(Q)).
Furthermore, we let FN be the field of meromorphic functions on X(N) defined
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over the N -th cyclotomic field Q(ζN ). We know that F1 = Q(j(τ)), where

(4)
j(τ) = q−1 + 744 + 196884q+ 21493760q2 + 864299970q3

+ 20245856256q4 + · · ·
is the elliptic modular j-function, and FN is a Galois extension of F1 with

(5) Gal(FN/F1) ≃ GL2(Z/NZ)/{±I2},
whose action is given as follows: For an element α ∈ GL2(Z/NZ)/{±I2} we
decompose it into

α = α1 · α2 for some α1 ∈ SL2(Z) and α2 = [ 1 0
0 d ] with d ∈ (Z/NZ)∗.

Then, the action of α1 is given by a fractional linear transformation. And, α2

acts by the rule
∑

n≫−∞
cnq

n/N 7→
∑

n≫−∞
cσd
n qn/N ,

where
∑

n≫−∞ cnq
n/N is the Fourier expansion of a function in FN and σd is

the automorphism of Q(ζN ) defined by ζσd

N = ζdN [15, Chapter 6, §3]. Here, for
later use, we observe that

(6)

[FN : F1] = #GL2(Z/NZ)/{±I2}

=

{

6 if N = 2,

(N4/2)
∏

p|N (1− p−1)(1− p−2) if N ≥ 3

[23, pp. 21–22].

Proposition 2.1. For a given integer N (≥ 2) let {m(r)}r∈(1/N)Z2\Z2 be a

family of integers such that m(r) = 0 except finitely many r. A product of

Siegel functions

g(τ) = ζ
∏

r=[ r1r2 ]

gr(τ)
m(r)

belongs to FN , where ζ =
∏

r
eπir2(1−r1)m(r), if

∑

r

m(r)(Nr1)
2 ≡

∑

r

m(r)(Nr2)
2 ≡ 0 (mod gcd(2, N) ·N),

∑

r

m(r)(Nr1)(Nr2) ≡ 0 (mod N),

gcd(12, N) ·
∑

r

m(r) ≡ 0 (mod 12).

Proof. See [12, Chapter 3, Theorems 5.2 and 5.3]. �

Remark 2.2. Let g(τ) be an element of FN for some integer N (≥ 2). If both
g(τ) and g(τ)−1 are integral over Q[j(τ)], then g(τ) is called a modular unit (of
level N). As is well-known, g(τ) is a modular unit if and only if it has neither
zeros nor poles on H ([12, p. 36] or [11, Theorem 2.2]). Hence any product of
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Siegel functions becomes a modular unit. In particular, g[ r1r2 ]
(τ)12N/ gcd(6,N) is

a modular unit of level N for any [ r1r2 ] ∈ (1/N)Z2 \ Z2.

For a real number x we denote by 〈x〉 the fractional part of x in the interval
[0, 1).

Proposition 2.3. Let [ r1r2 ] ∈ (1/N)Z2 \ Z2 for an integer N (≥ 2).

(i) We have the q-order formula

ordq g[ r1r2 ]
(τ) =

1

2
B2(〈r1〉).

(ii) For γ =
[

a b
c d

]

∈ SL2(Z) with c > 0 we get the transformation formula

g[ r1r2 ]
(τ) ◦ γ = −ie(πi/6)(a/c+d/c−12

∑c−1
k=1(k/c−1/2)(〈kd/c〉−1/2))g[ r1a+r2c

r1b+r2d

](τ).

(iii) For s = [ s1s2 ] ∈ Z2 we have

g[ r1+s1
r2+s2

](τ) = (−1)s1s2+s1+s2e−πi(s1r2−s2r1)g[ r1r2 ]
(τ).

(iv) g[ r1r2 ]
(τ)12N/ gcd(6,N) is determined only by ± [ r1r2 ] (mod Z2).

(v) An element
[

a b
c d

]

∈ GL2(Z/NZ)/{±I2} (≃ Gal(FN/F1)) acts on it by

(g[ r1r2 ]
(τ)12N/ gcd(6,N))

[

a b
c d

]

= g[ r1a+r2c
r1b+r2d

](τ)12N/ gcd(6,N).

(vi) g[ r1r2 ]
(τ) is integral over Z[j(τ)].

Proof. (i) See [12, p. 31].
(ii) See [12, p. 27, K1 and p. 29] and [14, Chapter IX].
(iii) See [12, p. 28, K2 and p. 29].
(iv) One can easily check this relation by the definition (1) and (iii).
(v) See [12, Chapter 2, Proposition 1.3] and (iv).
(vi) See [11, §3]. �

For an imaginary quadratic field K of discriminant dK we let

(7) τK =

{ √
dK/2 if dK ≡ 0 (mod 4),

(3 +
√
dK)/2 if dK ≡ 1 (mod 4),

which generates the ring of integers OK of K over Z. Then we have

min(τK ,Q) = X2+BX+C =

{

X2 − dK/4 if dK ≡ 0 (mod 4),

X2 − 3X + (9− dK)/4 if dK ≡ 1 (mod 4).

For each positive integer N we define the matrix group

WN,τK =

{[

t−Bs −Cs
s t

]

∈ GL2(Z/NZ) | t, s ∈ Z/NZ

}

.
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Proposition 2.4. For a positive integer N we have

K(N) = K(h(τK) | h ∈ FN is defined and finite at τK).

Proof. See [15, Chapter 10, Corollary to Theorem 2] or [23, Proposition 6.33].
�

Proposition 2.5 (Shimura’s reciprocity law). Let K be an imaginary quadratic

field. For each positive integer N , the matrix group WN,τK gives rise to the

surjection

WN,τK −→ Gal(K(N)/HK)

α 7→ (h(τK) 7→ hα(τK) | h(τ) ∈ FN is defined and finite at τK),

whose kernel is

KerN,τK =



































{

±
[

1 0
0 1

]

, ±
[

−1 −3
1 −2

]

, ±
[

−2 3
−1 1

]}

if K = Q(
√
−3),

{

±
[

1 0
0 1

]

, ±
[

0 −1
1 0

]}

if K = Q(
√
−1),

{

±
[

1 0
0 1

]}

otherwise.

Proof. See [26, §3] or [7, pp. 50–51]. �

For an imaginary quadratic field K of discriminant dK , let

C(dK) = {aX2 + bXY + cY 2 ∈ Z[X,Y ] | gcd(a, b, c) = 1, b2 − 4ac = dK ,

(−a < b ≤ a < c or 0 ≤ b ≤ a = c)}
be the form class group of reduced quadratic forms of discriminant dK , whose
identity element is

{

X2 − (dK/4)Y 2 if dK ≡ 0 (mod 4),

X2 +XY + ((1 − dK)/4)Y 2 if dK ≡ 1 (mod 4)

[4, Theorems 2.8 and 3.9]. Note that if aX2 + bXY + cY 2 ∈ C(dK), then

a ≤
√

|dK |/3
[4, p. 29] and the group C(dK) is isomorphic to the ideal class group of K, and
hence to Gal(HK/K) [4, Theorem 7.7]. Thus, in particular, the class number
of K is the same as the order of the group C(dK), namely [HK : K]. We denote
it by hK .

Proposition 2.6 (Shimura’s reciprocity law). Let K be an imaginary quadratic

field of discriminant dK , and p be a prime. For each Q = aX2+ bXY + cY 2 ∈
C(dK) let

τQ = (−b+
√

dK)/2a (∈ H)

and uQ be an element of GL2(Z/pZ)/{±I2} given as follows:
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Case 1. dK ≡ 0 (mod 4)

uQ =



































[

a b/2
0 1

]

if p ∤ a,

[

−b/2 −c
1 0

]

if p | a and p ∤ c,

[

−a− b/2 −c− b/2
1 −1

]

if p | a and p | c,

Case 2. dK ≡ 1 (mod 4)

uQ =



































[

a (3 + b)/2
0 1

]

if p ∤ a,

[

(3− b)/2 −c
1 0

]

if p | a and p ∤ c,

[

−a+ (3− b)/2 −c− (3 + b)/2
1 −1

]

if p | a and p | c.

If h(τ) ∈ Fp is defined and finite at τK and h(τK) ∈ HK , then the conjugates

of h(τK) via the action of Gal(HK/K) are given by

huQ(τQ) (Q ∈ C(dK))

possibly with some multiplicity.

Proof. See [26, §6] or [7, Lemma 20]. �

3. Generators of ray class fields

Let K be an imaginary quadratic field. For an integer N (≥ 2) we get

g(N)(C0) = g[ 0
1/N

](τK)12N

by the definition (2). In this section we shall show that it plays a role of
primitive generator of K(N) over HK (or, even over K).

Lemma 3.1. Let [ st ]∈Z2\NZ2 for an integer N(≥ 2). If [ st ] 6≡ ± [ 01 ] (mod N),
then g[ 0

1/N

](τ)12N 6= g[ s/N
t/N

](τ)12N .

Proof. Assume on the contrary that g[ 0
1/N

](τ)12N = g[ s/N
t/N

](τ)12N . Since

ordq g[ 0
1/N

](τ)12N = 6NB2(0) = ordq g[ s/N
t/N

](τ)12N = 6NB2(〈s/N〉)

by Proposition 2.3(i), we must have s ≡ 0 (mod N) by the graph of B2(X) =
X2 −X + 1/6. And, since

ordq (g[ 0
1/N

](τ)12N )

[

0 −1
1 0

]

= ordq g[ 1/N
0

](τ)12N = 6NB2(1/N)
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= ordq (g[ 0
t/N

](τ)12N )

[

0 −1
1 0

]

= ordq g[ t/N
0

](τ)12N = 6NB2(〈t/N〉)

by Proposition 2.3(ii) and (i), it follows that t ≡ ±1 (mod N). This proves the
lemma. �

Lemma 3.2. (i) j(τ) induces a bijective map j : SL2(Z)\H → C.
(ii) If K1 and K2 are distinct imaginary quadratic fields, then τK1 and τK2

are not equivalent under the action of SL2(Z).

Proof. (i) See [15, Chapter 3, Theorem 4].
(ii) See [15, Chapter 3, Theorem 1]. �

For a real number x we denote by [x] the greatest integer that is less than
or equal to x.

Theorem 3.3. For a given integer N (≥ 2) we have

#{imaginary quadratic fields K | g[ 0
1/N

](τK)12N does not generate K(N)

over HK}

≤
{

12 if N = 2,

((N + 1)[N/2]− 1)(N5/4)
∏

p|N (1− p−1)(1 − p−2) if N ≥ 3.

Proof. Let

S =

{[

s
t

]

∈ Z2 | (s = 0, 2 ≤ t ≤ [N/2]) or (1 ≤ s ≤ [N/2], 0 ≤ t ≤ N − 1)

}

,

which consists of (N + 1)[N/2]− 1 elements. For each [ st ] ∈ S we consider the
function

g(τ) = g[ 0
1/N

](τ)12N − g[ s/N
t/N

](τ)12N (∈ FN ),

which is nonzero by Lemma 3.1. Since g(τ) is integral over Z[j(τ)] by Propo-
sition 2.3(vi), we have

(8) NFN/F1
(g(τ)) = g(τ)

∏

σ 6=id

g(τ)σ = P (j(τ))

for some nonzero polynomial P (X) ∈ Z[X ].
Note by Proposition 2.3(v) that any conjugate of g(τ) under the action of

Gal(FN/F1) is of the form

g[ a/N
b/N

](τ)12N − g[ c/N
d/N

](τ)12N for some

[

a
b

]

,

[

c
d

]

∈ Z2 \NZ2,

which is holomorphic on H. Now, let

Z[ st ]
= {imaginary quadratic fields K | g(τK) = 0}.
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If K ∈ Z[ st ]
, then (8) gives P (j(τK)) = 0, from which we obtain by Lemma 3.2

#Z[ st ]
≤ degP (X).

On the other hand, since

ordq (g[ a/N
b/N

](τ)12N − g[ c/N
d/N

](τ)12N )

≥ min
{

6NB2(〈a/N〉), 6NB2(〈c/N〉)
}

by Proposition 2.3(i)

≥ 6NB2(1/2) by the graph of B2(X) = X2 −X + 1/6

= −N/2,

we deduce that

ordq P (j(τ)) = ordq NFN/F1
(g(τ))

≥ −(N/2) · [FN : F1]

= −(N/2) ·#GL2(Z/NZ)/{±I2} by (5)

=

{

−6 if N = 2,

−(N5/4)
∏

p|N (1− p−1)(1− p−2) if N ≥ 3
by (6).

Thus we get from the fact ordq j(τ) = −1 that

#Z[ st ]
≤ degP (X) ≤

{

6 if N = 2,

(N5/4)
∏

p|N (1− p−1)(1 − p−2) if N ≥ 3.

And, if we let

Z =
⋃

[ st ]∈S

Z[ st ]
,

then

#Z ≤
∑

[ st ]∈S

#Z[ st ]
≤ #S · max

[ st ]∈S
{#Z[ st ]

}

≤
{

12 if N = 2,

((N + 1)[N/2]− 1)(N5/4)
∏

p|N (1− p−1)(1− p−2) if N ≥ 3.

Now, let K be an imaginary quadratic field lying outside Z. Then the
singular value g[ 0

1/N

](τK)12N generates K(N) over HK . Indeed, suppose that

it does not generate K(N) over HK . Then there exists a non-identity element

α =
[

t−Bs −Cs
s t

]

of WN,τK/KerN,τK (≃ Gal(K(N)/HK)) in Proposition 2.5

which fixes g[ 0
1/N

](τK)12N . Here we may assume that [ st ] belongs to S because

WN,τK/KerN,τK is a subgroup or a quotient of GL2(Z/NZ)/{±I2}. We derive
that

0 = g[ 0
1/N

](τK)12N − (g[ 0
1/N

](τK)12N )α
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= g[ 0
1/N

](τK)12N − (g[ 0
1/N

](τ)12N )α(τK) by Proposition 2.5

= g[ 0
1/N

](τK)12N − g[ s/N
t/N

](τK)12N by Proposition 2.3(iv) and (v).

But this implies that K belongs to Z[ st ]
(⊆ Z), which yields a contradiction.

Therefore we conclude that

{imaginary quadratic fields K | g[ 0
1/N

](τK)12N does not generate

K(N) over HK} ⊆ Z.

This completes the proof. �

Let K be an imaginary quadratic field and f be a nontrivial ideal of OK .
For a character χ of Cl(f) we let fχ be the conductor of χ and χ0 be the proper
character of Cl(fχ) corresponding to χ. If f 6= OK and χ is also a nontrivial
character of Cl(f), then we define the Stickelberger element

Sf(χ, gf) =
∑

C∈Cl(f)

χ(C) log |gf(C)|,

and the L-function

Lf(s, χ) =
∑

a

χ([a])

NK/Q(a)s
(s ∈ C),

where a runs over all nontrivial ideals of OK relatively prime to f and [a] is the
class containing a.

Proposition 3.4 (The second Kronecker limit formula). If fχ 6= OK , then we

have

Lfχ(1, χ0)
∏

p | f, p ∤ fχ

(1− χ0([p])) = − πχ0([γdK fχ])

3N(fχ)
√
−dKω(fχ)Tγ(χ0)

Sf(χ, gf),

where dK is the different of K/Q, γ is a nonzero element of K so that γdK fχ
becomes an ideal of OK relatively prime to fχ, N(fχ) is the smallest positive

integer in fχ, ω(fχ) = |{ζ ∈ O×
K | ζ ≡ 1 (mod fχ)}| and

Tγ(χ0) =
∑

x+fχ∈πfχ (OK)×

χ0([xOK ])e2πiTrK/Q(xγ).

Proof. See [15, Chapter 22, Theorems 1 and 2] and [12, Chapter 11, Theorem
2.1]. �

Remark 3.5. (i) The Euler factor
∏

p | f, p ∤ fχ
(1−χ0([p])) is understood to

be 1 if there is no prime ideal p such that p | f and p ∤ fχ.
(ii) As is well-known, Lfχ(1, χ0) 6= 0 [10, Chapter IV, Proposition 5.7].
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Theorem 3.6. Let K be an imaginary quadratic field and f be a nontrivial

proper ideal of OK whose prime ideal factorization is given by

f =

n
∏

k=1

pekk .

Assume that

(9) [Kf : K] > 2

n
∑

k=1

[K
fp

−ek
k

: K].

Then gf(C0) generates Kf over K.

Proof. Set F = K(gf(C0)). We then derive that

#{characters χ of Gal(Kf/K) | χ|Gal(Kf/F ) 6= 1}
= #{characters χ of Gal(Kf/K)} −#{characters χ of Gal(F/K)}
= [Kf : K]− [F : K].(10)

Furthermore, we have

#{characters χ of Gal(Kf/K) | pk ∤ fχ for some k}
= #{characters χ of Gal(Kf/K) | fχ | fp−ek

k for some k}

≤
n
∑

k=1

#{characters χ of Gal(K
fp

−ek
k

/K)}

=
n
∑

k=1

[K
fp

−ek
k

: K].(11)

Now, suppose that F is properly contained in Kf. Then we get by the
assumption (9) that

[Kf : K]− [F : K] = [Kf : K](1− 1/[Kf : F ])

> 2

n
∑

k=1

[K
fp

−ek
k

: K](1− 1/2)

=

n
∑

k=1

[K
fp

−ek
k

: K].

This, together with (10) and (11), implies that there exists a character χ of
Gal(Kf/K) such that

(12) χ|Gal(Kf/F ) 6= 1,

(13) pk | fχ for all k = 1, . . . , n.
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Identifying Cl(f) and Gal(Kf/K) via the Artin reciprocity map, we obtain from
Proposition 3.4 and (13) that

(14) 0 6= Lfχ(1, χ0) = − πχ0([γdK fχ])

3N(fχ)
√
−dKω(fχ)Tγ(χ0)

Sf(χ, gf).

On the other hand, we achieve that

Sf(χ, gf) =
∑

C∈Cl(f)

χ(C) log |gf(C0)
C | by (3)

=
∑

C1∈Gal(Kf/K)

C1 (mod Gal(Kf/F ))

∑

C2∈Gal(Kf/F )

χ(C1C2) log |gf(C0)
C1C2 |

=
∑

C1

∑

C2

χ(C1)χ(C2) log |(gf(C0)
C2)C1 |

=
∑

C1

χ(C1) log |gf(C0)
C1 |(

∑

C2

χ(C2)) by the fact gf(C0) ∈ F

= 0 by (12),

which contradicts (14). Therefore, we conclude F = Kf as desired. �

Remark 3.7. (i) For a nontrivial integral ideal f of an imaginary quadratic field
K, we have a degree formula

(15) [Kf : K] =
hKϕ(f)ω(f)

ωK
,

where ϕ is the (multiplicative) Euler function for ideals, namely

ϕ(pn) = (NK/Q(p)− 1)NK/Q(p)
n−1

for a prime ideal power pn (n ≥ 1), ω(f) is the number of roots of unity in
K which are ≡ 1 (mod f) and ωK is the number of roots of unity in K [16,
Chapter VI, Theorem 1].

Let N (≥ 2) be an integer whose prime factorization is given by

N =
A
∏

a=1

pua
a

B
∏

b=1

qvbb

C
∏

c=1

rwc
c (A,B,C, ua, vb, wc ≥ 0),

where each pa (respectively, qb and rc) splits (respectively, is inert and ramified)
in K. One can then verify that the condition

4

A
∑

a=1

1

(pa − 1)pua−1
a

+ 2

B
∑

b=1

1

(q2b − 1)q
2(vb−1)
b

+ 2

C
∑

c=1

1

(rc − 1)r2wc−1
c

<
ω((N))

ωK

implies the assumption (9) when f = (N).
(ii) Let dk (k = 1, . . . , n) be the exponent of the group (OK/pekk )×. Schertz

[20, Theorem 3] proved that if the conductor of the extension Kf/K is exactly
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f, then gf(C0) is a primitive generator of Kf over K in either case when n = 1
or

(16) dk ∤ 2 (k = 1, . . . , n− 1), dn ∤ 2ωK and penn ∤ gcd(6, ωK).

Note that we do not require any condition on the conductor of the extension
Kf/K.

4. Siegel-Ramachandra invariants of conductor 2

Throughout this section we let K be an imaginary quadratic field. We shall
examine certain properties of the singular value g[ 0

1/2

](τK) which is a 24-th

root of g(2)(C0). Although most of the results here are classical and known, we
will present relatively short and new proofs purely in terms of Siegel functions.

By the definition (1) we have

(17)

g[ 0
1/2

](τ) = 2ζ4q
1/12

∞
∏

n=1

(1 + qn)2,

g[ 1/2
0

](τ) = −q−1/24
∞
∏

n=1

(1− qn−1/2)2,

g[ 1/2
1/2

](τ) = ζ38q
−1/24

∞
∏

n=1

(1 + qn−1/2)2.

Let γ2(τ) be the cube root of j(τ) whose Fourier expansion begins with the
term q−1/3.

Lemma 4.1. (i) We have the identity

g[ 0
1/2

](τ)g[ 1/2
0

](τ)g[ 1/2
1/2

](τ) = 2ζ8.

(ii) We have the relations

γ2(τ) =

g[ 0
1/2

](τ)12 + 16

g[ 0
1/2

](τ)4
=

g[ 1/2
0

](τ)12 + 16

g[ 1/2
0

](τ)4
=

g[ 1/2
1/2

](τ)12 + 16

g[ 1/2
1/2

](τ)4
.

Proof. (i) We obtain by (17)

g[ 0
1/2

](τ)g[ 1/2
0

](τ)g[ 1/2
1/2

](τ) = 2ζ8

∞
∏

n=1

(1 + qn)2(1− q2n−1)2

= 2ζ8

∞
∏

n=1

(1− q2n)2

(1− qn)2
· (1− qn)2

(1− q2n)2
= 2ζ8.

(ii) Since g[ 0
1/2

](τ)12 ∈ F2 by Proposition 2.1 and

Gal(F2/F1) ≃ GL2(Z/2Z)/{±I2}
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=

{[

1 0
0 1

]

,

[

1 1
0 1

]

,

[

1 1
1 0

]

,

[

1 0
1 1

]

,

[

0 1
1 0

]

,

[

0 1
1 1

]}

by (5), we derive that
∏

σ∈Gal(F2/F1)

(X − (g[ 0
1/2

](τ)12)σ)

= (X − g[ 0
1/2

](τ)12)2(X − g[ 1/2
0

](τ)12)2(X − g[ 1/2
1/2

](τ)12)2

by Proposition 2.3(iv) and (v)

= (X3 + 48X2 + (−q−1 + 24− 196884q+ · · · )X + 4096)2 by (17)

= (X3 + 48X2 + (−j(τ) + 768)X + 4096)2 by (4)

= ((X + 16)3 − j(τ)X)2

= ((X + 16)3 − γ2(τ)
3X)2.

Hence we get

γ2(τ) = ξ1

g[ 0
1/2

](τ)12 + 16

g[ 0
1/2

](τ)4
= ξ2

g[ 1/2
0

](τ)12 + 16

g[ 1/2
0

](τ)4
= ξ3

g[ 1/2
1/2

](τ)12 + 16

g[ 1/2
1/2

](τ)4

for some cube roots of unity ξk (k = 1, 2, 3). Comparing the leading terms of
Fourier expansions we conclude ξ1 = ξ2 = ξ3 = 1. �

Remark 4.2. Let

η(τ) =
√
2πζ8q

1/24
∞
∏

n=1

(1− qn)

be the Dedekind eta function, and

f(τ) = ζ−1
48

η((τ + 1)/2)

η(τ)
, f1(τ) =

η(τ/2)

η(τ)
, f2(τ) =

√
2
η(2τ)

η(τ)

be the Weber functions. Then one can deduce the following identities

(18) f(τ)2 = ζ58g
[

1/2
1/2

](τ), f1(τ)
2 = −g[ 1/2

0

](τ), f2(τ)
2 = ζ34g

[

0
1/2

](τ),

and hence Lemma 4.1(ii) can be reformulated in terms of the Weber functions
as in the classical case [4, Theorem 12.17].

Lemma 4.3. If x is a real algebraic integer, then min(x,K) has integer coef-

ficients.

Proof. Since x ∈ R, we get

[K(x) : K] =
[K(x) : Q(x)] · [Q(x) : Q]

[K : Q]
= [Q(x) : Q],

from which it follows that min(x,K) = min(x,Q). Furthermore, min(x,K) has
integer coefficients, because x is an algebraic integer. �
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Proposition 4.4. Let K be an imaginary quadratic field of discriminant dK .

(i) j(τK) is a real algebraic integer which generates HK over K.

(ii) If p is a prime dividing the discriminant of min(j(τK),K), then (dK

p ) 6=
1 and p ≤ |dK |.

Proof. (i) See [15, Chapter 5, Theorem 4 and Chapter 10, Theorem 1].
(ii) See [8], [6] or [4, Theorem 13.28]. �

Remark 4.5. For any [ r1r2 ] ∈ Q2 \ Z2, g[ r1r2 ]
(τK) is an algebraic integer by

Propositions 2.3(vi) and 4.4(i).

Theorem 4.6. Let K 6=Q(
√
−3),Q(

√
−1) and set x=NK(2)/HK

(g[ 0
1/2

](τK)12).

Assume that 2 is not inert in K (equivalently, dK ≡ 0 (mod 4) or dK ≡
1 (mod 8)).

(i) x generates HK over K.

(ii) x is a real algebraic integer dividing 212 whose minimal polynomial

min(x,K) has integer coefficients.

(iii) If p is an odd prime dividing the discriminant of min(x,K), then

(dK

p ) 6= 1 and p ≤ |dK |.

Proof. (i) Since g[ 0
1/2

](τ)12 ∈ F2, g[ 0
1/2

](τK)12 lies in K(2) by Proposition 2.4.

Moreover, we have

[K(2) : HK ] =

{

2 if dK ≡ 0 (mod 4),

1 if dK ≡ 1 (mod 8)

by the degree formula (15), and

Gal(K(2)/HK) ≃ W2,τK/Ker2,τK

=



































{[

1 0
0 1

]

,

[

1 0
1 1

]}

if dK ≡ 0 (mod 8),

{[

1 0
0 1

]

,

[

0 1
1 0

]}

if dK ≡ 4 (mod 8),

{[

1 0
0 1

]}

if dK ≡ 1 (mod 8),

by Proposition 2.5. So we obtain

x = NK(2)/HK
(g[ 0

1/2

](τK)12)(19)

=























g[ 0
1/2

](τK)12g[ 1/2
1/2

](τK)12 if dK ≡ 0 (mod 8),

g[ 0
1/2

](τK)12g[ 1/2
0

](τK)12 if dK ≡ 4 (mod 8),

g[ 0
1/2

](τK)12 if dK ≡ 1 (mod 8)
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by Propositions 2.5 and 2.3(iv), (v); and hence

(20) j(τK) =

{

(256− x)3/x2 if dK ≡ 0 (mod 4),

(x+ 16)3/x if dK ≡ 1 (mod 8)

by Lemma 4.1. Therefore x generates HK over K by Proposition 4.4(i).
(ii) We see that x ∈ R by the definition (7), (17) and (19). Furthermore,

since x is an algebraic integer by Remark 4.5, min(x,K) has integer coefficients
by Lemma 4.3. And, x divides 212 by (19) and Lemma 4.1(i).

(iii) If hK = 1, there is nothing to prove. So we assume hK > 1. If σ1 and
σ2 are distinct elements of Gal(HK/K), then we derive from (20) that

j(τK)σ1 − j(τK)σ2

=















(x1 − x2)(−x2
1x

2
2 + 196608x1x2 − 16777216x1 − 16777216x2)/x

2
1x

2
2

if dK ≡ 0 (mod 4),

(x1 − x2)(x
2
1x2 + x1x

2
2 + 48x1x2 − 4096)/x1x2

if dK ≡ 1 (mod 8),

where x1 = xσ1 and x2 = xσ2 . Observe from (ii) that there is no prime ideal p
of HK which contains x1x2 and lies above an odd prime. Therefore, if p is an
odd prime dividing the discriminant of min(x,K), then (dK

p ) 6= 1 and p ≤ |dK |
by Proposition 4.4(ii). �

Remark 4.7. Let K 6= Q(
√
−3),Q(

√
−1). Since g[ 0

1/2

](τK)24 generates K(2)

over K by Theorem 3.6 and Remark 3.7, so does g[ 0
1/2

](τK)12. If 2 is inert in

K, then

Gal(K(2)/HK) ≃ W2,τK/Ker2,τK =

{[

1 0
0 1

]

,

[

1 1
1 0

]

,

[

0 1
1 1

]}

by Proposition 2.5. And, we derive from Proposition 2.3(iv), (v) and Lemma
4.1(i) that

NK(2)/HK
(g[ 0

1/2

](τK)12) = g[ 0
1/2

](τK)12g[ 1/2
0

](τK)12g[ 1/2
1/2

](τK)12 = −212.

Therefore, in this case one cannot develop a theory like Theorem 4.6 with
NK(2)/HK

(g[ 0
1/2

](τK)12).

Theorem 4.8. Let K be an imaginary quadratic field of discriminant dK .

Assume that 2 is inert and 3 is not ramified in K (equivalently, dK ≡ 5 (mod 8)
and dK 6≡ 0 (mod 3)).

(i) The real algebraic integer ζ8g[ 0
1/2

](τK) generates K(2) over HK .

(ii) The real algebraic integer γ2(τK) generates HK over K.
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Proof. (i) Let α = g[ 0
1/2

](τK). It is an algebraic integer by Remark 4.5, and

ζ8α ∈ R by the definition (7) and (17). Since α4 is a real cube root of α12, we
get from Remark 4.7 that

[K(2)(α
4) : K(2)] = [K(α4) : K(α12)] =

[K(α4) : Q(α4)][Q(α4) : Q(α12)]

[K(α12) : Q(α12)]

= [Q(α4) : Q(α12)] = 1 or 3.

Furthermore, since g[ 0
1/2

](τ)4 ∈ F6 by Proposition 2.1, we get α4 ∈ K(6) by

Proposition 2.4, from which it follows that [K(2)(α
4) : K(2)] divides

[K(6) : K(2)] =

{

2 if 3 splits in K,

4 if 3 is inert in K

by the degree formula (15). Hence [K(2)(α
4) : K(2)] = 1, which implies α4 ∈

K(2).

On the other hand, since ζ−1
8 g[ 0

1/2

](τ)3 ∈ F8 by Proposition 2.1, we obtain

ζ−1
8 α3 ∈ K(8) by Proposition 2.4. One can then readily check by Proposition
2.5 that

Gal(K(8)/K(2))

≃
〈[

5 4
4 1

]〉

×















〈[

7 6
2 1

]〉

if dK ≡ 5 (mod 16),

〈[

7 2
2 1

]〉

if dK ≡ 13 (mod 16)

(≃ Z/2Z× Z/4Z).

Decomposing [ 5 4
4 1 ] = [ 5 12

12 29 ] [
1 0
0 5 ], we deduce that

(ζ−1
8 α3)[

5 4
4 1 ] = (ζ−1

8 g[ 0
1/2

](τ)3)[
5 12
12 29 ][

1 0
0 5 ](τK) by Proposition 2.5

= (ζ−1
8 g[ 0

1/2

](τ)3 ◦ [ 5 12
12 29 ])

[ 1 0
0 5 ](τK)

= (ζ−1
8 g[ 6

29/2

](τ)3)[
1 0
0 5 ](τK) by Proposition 2.3(ii)

= (ζ38g
[

0
1/2

](τ)3)[
1 0
0 5 ](τK) by Proposition 2.3(iii)

= (8ζ8q
1/4

∞
∏

n=1

(1 + qn)6)[
1 0
0 5 ](τK) by (17)

= (8ζ58q
1/4

∞
∏

n=1

(1 + qn)6)(τK)

= ζ−1
8 g[ 0

1/2

](τK)3

= ζ−1
8 α3.
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In a similar way, one can verify that ζ−1
8 α3 is invariant under the actions of

[

7 6
2 1

]

=

[

7 2
10 3

] [

1 0
0 3

]

and

[

7 2
2 1

]

=

[

23 14
18 11

] [

1 0
0 3

]

.

Thus, ζ−1
8 α3 lies in K(2), so does α4/ζ−1

8 α3 = ζ8α. Lastly, since α12 generates
K(2) over K, so does ζ8α. Therefore, we are done.

(ii) Let α = g[ 0
1/2

](τK). Since γ2(τK) = (α12 + 16)/α4 by Lemma 4.1(ii)

and α4 ∈ K(2) ∩ R by (i), we have γ2(τK) ∈ K(2) ∩ R. Note from Remark

4.7 that g[ 1/2
0

](τK)12 and g[ 1/2
1/2

](τK)12 are the two conjugates of α12 over

HK . In particular, g[ 1/2
0

](τK)4 and g[ 1/2
1/2

](τK)4 belong to K(2) by Lemma

4.1(ii). Hence, the other two conjugates of α4 over HK are ξ1g[ 1/2
0

](τK)4 and

ξ2g[ 1/2
1/2

](τK)4 for some cube roots of unity ξ1, ξ2. If ζ3 lies in K(2), then 3

ramifies in K(2) (but not in K by hypothesis), which contradicts the fact that
all prime ideals of K which are ramified in K(2) must divide (2). So we get
ξ1 = ξ2 = 1. And, Lemma 4.1(ii) shows that γ2(τK) is invariant under the
action of Gal(K(2)/HK); and hence γ2(τK) ∈ HK . Therefore, we conclude
that γ2(τK) is a real algebraic integer which generates HK over K by the fact
j(τK) = γ2(τK)3 and Proposition 4.4(i). �

Remark 4.9. Observe that ζ8g[ 0
1/2

](τK) = ζ38 f2(τK)2 by (18). Besides Theorem

4.8 there are several other theorems which assert that the singular values of the
Weber functions and γ2(τ) generate class fields of imaginary quadratic fields
([27, §126–127], [19], [21], [4, §12]) whose proofs are quite classical. However,
they are certainly elegant and worthy of considering. On the other hand, Gee
[7] applied Shimura’s reciprocity law to the Weber functions which satisfy the
following transformation properties:

f(τ) ◦ T = ζ−1
48 f1(τ), f1(τ) ◦ T = ζ−1

48 f(τ), f2(τ) ◦ T = ζ24f2(τ),

f(τ) ◦ S = f(τ), f1(τ) ◦ S = f2(τ), f2(τ) ◦ S = f1(τ),

where T = [ 1 1
0 1 ] and S =

[

0 −1
1 0

]

are the generators of SL2(Z). But, the general
transformation formula for

f(τ) ◦ γ (f(τ) = f(τ), f1(τ), f2(τ), γ ∈ SL2(Z))

does not seem to be known, which forces her to produce a redundant step to
decompose γ into a product of T and S [7, §5]. Thus we would like to point
out that the relation (18) and Proposition 2.3(ii), (iii) will give us an explicit
formula for f(τ)2◦γ, from which one can efficiently apply Shimura’s reciprocity
law.
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5. Application to class number one problem

In this section we shall revisit Gauss’ class number one problem for imaginary
quadratic fields.

Let K be an imaginary quadratic field of discriminant dK . Since j(τK) is a
real algebraic integer lying in HK by Proposition 4.4(i), it should be an integer
when K has class number one. By determining the form class group C(dK)
we know that there are only nine imaginary quadratic fields K of class number
one with dK ≥ −163 [4, p. 261]:

Table 1. Imaginary quadratic fields K of class number one
with dK ≥ −163.

K Q(
√
−3) Q(

√
−1) Q(

√
−7) Q(

√
−2) Q(

√
−11) Q(

√
−19) Q(

√
−43) Q(

√
−67) Q(

√
−163)

dK −3 −4 −7 −8 −11 −19 −43 −67 −163
j(τK) 0 123 −153 203 −323 −963 −9603 −52803 −6403203

γ2(τK) 0 12 −15 20 −32 −96 −960 −5280 −640320

We shall show in this section that the above table is the complete one by
utilizing Shimura’s reciprocity law and Siegel functions.

Lemma 5.1. Let τ0 ∈ H, and set A = |e2πiτ0 |.
(i) If [ ab ] ∈ Q2 with 0 < a ≤ 1/2, then |g[ ab ](τ0)| ≤ A(1/2)B2(a)e2A

a/(1−A).

(ii) If b∈Q with 0 < b < 1, then |g[ 0b ](τ0)| ≤ A(1/2)B2(0)|1−e2πib|e2A/(1−A).

Proof. (i) We derive from the definition (1) that

|g[ ab ](τ0)| ≤ A(1/2)B2(a)(1 +Aa)

∞
∏

n=1

(1 +An+a)(1 +An−a)

≤ A(1/2)B2(a)
∞
∏

n=0

(1 +An+a)2 by the facts A < 1 and 0 < a ≤ 1/2

≤ A(1/2)B2(a)
∞
∏

n=0

e2A
n+a

by the inequality 1 +X < eX for X > 0

= A(1/2)B2(a)e2A
a/(1−A).

(ii) In a similar way, we get that

|g[ 0b ](τ0)| ≤ A(1/2)B2(0)|1− e2πib|
∞
∏

n=1

(1 +An)2

≤ A(1/2)B2(0)|1− e2πib|
∞
∏

n=1

e2A
n

by the inequality 1 +X < eX for X > 0

= A(1/2)B2(0)|1− e2πib|e2A/(1−A). �
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Theorem 5.2. Let K (6= Q(
√
−3),Q(

√
−1)) be an imaginary quadratic field

of discriminant dK . Assume that K has class number one (that is, HK = K).

(i) If 2 is not inert in K, then dK = −7,−8.
(ii) If 2 is inert and 3 is ramified in K, then there is no such K.

(iii) If 2 is inert and 3 is not ramified in K, then dK = −11, −19, −43,
−67, −163.

Proof. Since we are assuming that K is neither Q(
√
−3) nor Q(

√
−1), we have

dK ≤ −7. Let α = g[ 0
1/2

](τK) (6= 0) and A = e−π
√

|dK|.

(i) If dK ≤ −31, then we see that

|NK(2)/K(α12)|1/12

=























|g[ 0
1/2

](τK)g[ 1/2
1/2

](τK)| if dK ≡ 0 (mod 8),

|g[ 0
1/2

](τK)g[ 1/2
0

](τK)| if dK ≡ 4 (mod 8),

|g[ 0
1/2

](τK)| if dK ≡ 1 (mod 8),

by (19)

≤
{

2A1/12e2A/(1−A) ·A−1/24e2A
1/2/(1−A) if dK ≡ 0 (mod 4),

2A1/12e2A/(1−A) if dK ≡ 1 (mod 8),
by Lemma 5.1

< 1 by the fact A ≤ e−π
√
31.

On the other hand, since NK(2)/K(α12) is a nonzero integer by Theorem 4.6(ii),
the above inequality is false; hence dK > −31. And, we get the conclusion by
Table 1.

(ii) Since 2 is inert and 3 is ramified in K (equivalently, dK ≡ 21 (mod 24)),
we have

Gal(K(3)/K) ≃ W3,τK/Ker3,τK =

{[

1 0
0 1

]

,

[

1 0
1 1

]

,

[

2 0
1 2

]}

by Proposition 2.5. Let β = g[ 0
1/3

](τK) (6= 0). Since g[ 0
1/3

](τ)12 ∈ F3 by

Proposition 2.1, we have β12 ∈ K(3) by Proposition 2.4. Furthermore, since

β12 is a real algebraic integer by the definition (1), Propositions 2.3(vi) and
4.4(i), NK(3)/K(β12) is a nonzero integer by Lemma 4.3. If dK ≤ −51, then we
derive that

|NK(3)/K(β12)|1/12

= |g[ 0
1/3

](τK)g[ 1/3
1/3

](τK)g[ 1/3
2/3

](τK)| by Proposition 2.3(iv) and (v)

≤ A1/12|1− ζ3|e2A/(1−A) · (A−1/36e2A
1/3/(1−A))2 by Lemma 5.1

=
√
3A1/36e(2A+4A1/3)/(1−A)

< 1 by the fact A ≤ e−π
√
51.
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Hence we must have −51 < dK ≤ −7. But, there is no such imaginary qua-
dratic field K with dK ≡ 21 (mod 24) as desired.

(iii) Let x = ζ8α. Since [K(2) : K] = 3 by the degree formula (15), we have

min(x,K) = X3 + aX2 + bX + c for some a, b, c ∈ Z

by Theorem 4.8(i) and Lemma 4.3. Furthermore, we get

min(x4,K) = X3 − γ2(τK)X − 16 (∈ Z[X ])

by Lemma 4.1(ii) and Theorem 4.8(ii). Now, by adopting Heegner’s idea [9]
one can determine the possible values of a, b, c, from which we obtain

γ2(τK) = 0,−32,−96,−960,−5280,−640320.

Therefore, we can conclude the assertion (iii) by Table 1 and Lemma 3.2,
although we omit the details [4, pp. 272–274]. �

Remark 5.3. (i) In 1903 Landau ([13] or [4, Theorem 2.18]) presented a simple
and elementary proof of Theorem 5.2(i) by considering the form class group
C(dK).

(ii) Theorem 4.8(i) is essentially a gap in Heegner’s work, which was fulfilled
by Stark [25].

(iii) To every imaginary quadratic order O of class number one there is an
associated elliptic curve EO over Q admitting complex multiplication by O.
It can be defined over Q and is unique up to Q-isomorphism. For a positive
integer n, let X+

ns(n) be the modular curve associated to the normalizer of the
non-split Cartan subgroup of level n which can be defined over Q [3]. If every
prime p dividing n is inert in O, then EO gives rise to an integral point of
X+

ns(n) [22, p. 195]. Here, by integral points we mean the points corresponding
to elliptic curves with integral j-invariant. As Serre pointed out [22, p. 197],
the solutions by Heegner and Stark can be viewed as the determination of the
integral points of X+

ns(24). And, Baran [2] recently gave a geometric solution
of the class number one problem by finding an explicit parametrization for the
modular curve X+

ns(9) over Q.

We can also apply the arguments in the proof of Theorem 5.2(i) and (ii) to
solve a problem concerning imaginary quadratic fields of class number two.

Theorem 5.4. Q(
√
−15) is the unique imaginary quadratic field of class num-

ber two in which 2 splits.

Proof. Let K be an imaginary quadratic field of discriminant dK and class
number two in which 2 splits (so dK ≡ 1 (mod 8)). Then the form class group
C(dK) consists of two reduced quadratic forms, that is

Q1 = X2 +XY + ((1 − dK)/4)Y 2,

Q2 = aX2 + bXY + cY 2 for some a, b, c ∈ Z with 2 ≤ a ≤
√

|dK |/3.
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And, we have by Proposition 2.6 with p = 2

τQ1 = (−1 +
√

dK)/2, uQ1 =

[

1 0
0 1

]

,

τQ2 = (−b+
√

dK)/2a, uQ2 =

[

∗ ∗
r s

]

for some

[

r
s

]

∈
{[

0
1

]

,

[

1
0

]

,

[

1
1

]}

.

Let α = g[ 0
1/2

](τK) (6= 0). Then α12 ∈ HK by (19). If dK ≤ −31, then we

derive that

|NHK/K(α12)|1/12

=
∏

Q∈C(dK)

|(g[ 0
1/2

](τ)12)uQ(τQ)|1/12 by Proposition 2.6

= |g[ 0
1/2

]((−1 +
√

dK)/2)| × |g[ r/2
s/2

]((−b+
√

dK)/2a)|

by Proposition 2.3(iv) and (v)

≤ 2A1/12e2A/(1−A) ×
{

2A1/12ae2A
1/a/(1−A1/a) if r = 0,

A−1/24ae2A
1/2a/(1−A1/a) if r = 1

with A = e−π
√

|dK | by Lemma 5.1

≤
{

4A1/12e2A/(1−A)−π
√
3/12+2e−π

√
3/(1−e−π

√
3) if r = 0,

2A1/12−1/48e2A/(1−A)+2e−π
√

3/2/(1−e−π
√

3) if r = 1

because A < 1 and 2 ≤ a ≤
√

|dK |/3
< 1 by the fact A ≤ e−π

√
31.

On the other hand, since α12 is a real algebraic integer, NHK/K(α12) is a
nonzero integer by Lemma 4.3. Therefore we should have dK > −31. One can
then easily see by the following remark that Q(

√
−15) is the unique one. �

Remark 5.5. There are exactly eighteen imaginary quadratic fields of class
number two whose discriminants are as follows [18, p. 636]:

− 15,−20,−24,−35,−40,−51,−52,−88,−91,−115,

− 123,−148,−187,−232,−235,−267,−403,−427.
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