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RAMANUJAN CONTINUED FRACTIONS OF

ORDER EIGHTEEN

Yoon Kyung Park

Abstract. As an analogy of the Rogers-Ramanujan continued fraction,

we define a Ramanujan continued fraction of order eighteen. There are
essentially three Ramanujan continued fractions of order eighteen, and we

study them using the theory of modular functions. First, we prove that
they are modular functions and find the relations with the Ramanujan

cubic continued fraction C(τ). We can then obtain that their values

are algebraic numbers. Finally, we evaluate them at some imaginary
quadratic quantities.

1. Introduction

For the complex upper half plane H and τ ∈ H, let q be exp(2πiτ). The
Rogers-Ramanujan continued fraction r(τ) ([12])

r(τ) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·
was studied by Ramanujan and Rogers. It generates the field K(Γ(5)) of modu-
lar functions on Γ(5), which is a subgroup of SL2(Z) with [SL2(Z) : Γ(5)] = 60.

There are more q-continued fractions, that appear in [12], such as the
Ramanujan-Göllnitz-Gordon continued fraction, Ramanujan’s cubic continued
fraction, and Ramanujan-Selberg continued fraction. These were studied from
the perspective of modular functions after the modularity of r(τ) was proved
([2, 3, 5, 8]).

Moreover, there are more functions written as q-continued fractions that do
not appear in Ramanujan’s notebook. One is the continued fraction X(τ) of

Received April 14, 2022; Accepted January 16, 2023.
2020 Mathematics Subject Classification. 11F03, 11R04, 11G16.

Key words and phrases. Ramanujan continued fraction, modular function, Klein forms.
This study was financially supported by NRF 2021R1F1A1055200.

©2023 Korean Mathematical Society

395



396 Y. K. PARK

order six [15]:

X(τ) =
q1/4(1− q2)

1− q3/2 +
(1− q1/2)(1− q7/2)

q1/2(1− q3/2)(1 + q3) +
(1− q5/2)(1− q13/2)

q3/2(1− q3/2)(1 + q6)
+ · · ·

= q1/4
∞∏

n=1

(1− q6n−5)(1− q6n−1)

(1− q6n−4)(1− q6n−2)
,

and another is a continued fraction U(τ) of order twelve [11]:

U(τ) =
q(1− q)

1− q3 +
q3(1− q2)(1− q4)

(1− q3)(1 + q6) +
q3(1− q8)(1− q10)

(1− q3)(1 + q12) + · · ·

= q

∞∏
n=1

(1− q12n−1)(1− q12n−11)

(1− q12n−5)(1− q12n−7)
.

Some properties of X(τ) and U(τ) were demonstrated, but Lee and the author
studied them as modular functions ([9, 10]).

For X(τ), order six evidently corresponds to the period of the exponents of q
in its infinite product expression; similarly, for U(τ), it is the same because the
exponents of q is twelve. Surekha and Vanitha recently studied two functions,
I1(τ) and I2(τ), written as q-continued fractions. They use the term “continued
fractions of order sixteen” ([13,14]).

To extend the definition of the order of the continued fraction, we call the
function rN (τ) a continued fraction of order N if it is written as a q-continued
fraction and the period of the exponent of q is N in its infinite product expres-
sion.

When we obtain the infinite product expression of the continued fractions
I1(τ) and I2(τ) of order sixteen, we can use the following identity from [12].

(1.1)

∞∏
n=1

(1− a2q4n−1)(1− b2q4n−1)

(1− a2q4n−3)(1− b2q4n−3)

=
1

1− ab+
(a− bq)(b− aq)

(1− ab)(1 + q2) +
(a− bq3)(b− aq3)

(1− ab)(1 + q4) + · · ·

with |ab| < 1 and |q| < 1.
In this paper, we study continued fractions of order eighteen. In (1.1), after

changing q by q9/2, and then taking a = q(27−2j)/4 and b = q(2j−9)/4, we can
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obtain the continued fractions forms of r18,j(τ):

(1.2) r18,j(τ) = q
2j−9

4

∞∏
n=1

(1− q18n−(9+j))(1− q18n−(9−j))

(1− q18n−(18−j))(1− q18n−j)
.

In [4, Theorem 6.9], one can find that r18,3(τ) is written in terms of Ra-
manujan’s cubic continued fraction:

(1.3) C(τ) = q1/3 =

∞∏
n=1

(1− q6n−5)(1− q6n−1)

(1− q6n−3)2

as follows:

(1.4) r18,3(τ)
4 = 1 +

1

C(3τ)3
,

we primarily study three of Ramanujan’s continued fractions: r18,1(τ), r18,2(τ),
and r18,4(τ).

This paper is organized as follows. To prove our main results, we review
parts of the modular function theory in Section 2. Using these, we prove the
modularity of r18,j(τ) (j = 1, 2, 3, 4) in Theorem 3.1. In Section 3, we study
three continued fractions: r18,1(τ), r18,2(τ) and r18,4(τ). They are conjugates
in the sense of the cubic polynomial with coefficients in K(Γ0(18)) (Theorem

3.3). We also evaluate r18,3(τ) for τ =
√
−1/27,

√
−2/27, i/3 and

√
−2/3 in

Example 4.1, and we state r18,1(
√
−1/27), r18,2(

√
−1/27), and r18,4(

√
−1/27)

in Example 4.2. We use the MAPLE program to find results.

2. Preliminaries

In this section, we mention some facts that we require to obtain our results.
Let H∗ be the union H ∪ Q ∪ {∞}. For a positive integer N , the congruence
subgroups Γ(N), Γ1(N), Γ0(N), Γ1(N), and Γ0(N) of SL2(Z) are defined as
the set of the matrices

(
a b
c d

)
congruent to ( 1 0

0 1 ), (
1 ∗
0 1 ), (

∗ ∗
0 ∗ ), (

1 0
∗ 1 ), and ( ∗ 0

∗ ∗ )
modulo N , respectively.

For a subgroup Γ of SL2(Z), an element γ =
(
a b
c d

)
∈ Γ acts on H∗ as

γτ = (aτ + b)/(cτ + d) for τ ∈ H∗. Hence, the quotient space Γ\H∗ can be
considered as a compact Riemann surface. If s is an element of Q ∪ {∞}, we
call s a cusp. If there is an element γ ∈ Γ such that γs1 = s2, then two cusps
s1 and s2 are equivalent under Γ.

For any cusp s of Γ, there is an element ρ of SL2(Z) such that ρs = ∞.
Moreover, there is the smallest positive integer hs satisfying ρ−1

(
1 hs
0 1

)
ρ ∈

Γ ∪ (−1) · Γ. We call hs the width of s. The width depends only on the
equivalence class of the cusp s under Γ and is independent of the choice of ρ.

Now, we define amodular function f(τ) on Γ as the complex valued functions
satisfying the following three conditions.

(1) f(τ) is meromorphic on H.
(2) f(τ) is invariant under Γ, that is, f(γτ) = f(τ) for all γ ∈ Γ.
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(3) f(τ) is meromorphic at all cusps of Γ.

In the above definition, we explain the meaning of (3) as follows. For s ∈
Q ∪ {∞} and ρ ∈ SL2(Z) with ρs = ∞, we obtain an expansion of the type
f(ρ−1τ) =

∑
n anq

n/hs because

f(ρ−1(τ + hs)) = f

((
ρ−1

(
1 hs

0 1

)
ρ

)
ρ−1τ

)
= f(ρ−1τ).

Consider that a modular function f(τ) is written as f(τ) =
∑

n anq
n/hs at s.

Subsequently, there is an integer n0 satisfying
∑

n≥n0
anq

n/hs for some integer

n0 with an0 ̸= 0. We call n0 the order of f(τ) at the cusp s and write ordsf(τ)
for n0. We say that f(τ) has a zero (or a pole) at s if ordsf(τ) is positive (or
negative). Now, we may identify a modular function on Γ as a meromorphic
function on Γ\H∗.

Denote the field of all modular functions on Γ by K(Γ). The field K(Γ) is
identified with the field C(Γ\H∗) of all meromorphic functions on Γ\H∗. For
a nonconstant function f(τ) in K(Γ), the field extension degree is the total
degree of poles:

[K(Γ) : C(f(τ))] = −
∑

z∈Γ\H∗

ordzf(τ)<0

ordzf(τ).

Here, we introduce the Klein form. In detail, refer to [7] or define it by (K4).
Set τ ∈ H and γ =

(
a b
c d

)
∈ SL2(Z). For a = (a1, a2) ∈ R2 −Z2, the Klein form

ka(τ) satisfies the following properties (K0)–(K5):
(K0) k−a(τ) = −ka(τ).
(K1) ka(γτ) = (cτ + d)−1kaγ(τ).
(K2) For any b = (b1, b2) ∈ Z2, we have

ka+b(τ) = ε(a,b)ka(τ),

where ε(a,b) = (−1)b1b2+b1+b2 eπi(b2a1−b1a2).
(K3) For a = (r/N, s/N) ∈ (1/N)Z2−Z2 and any γ ∈ Γ(N) with an integer

N > 1,

ka(γτ) = εa(γ)(cτ + d)−1ka(τ),

where εa(γ) = −(−1)((a−1)r+cs+N)(br+(d−1)s+N)/N2

eπi(br
2+(d−a)rs−cs2)/N2

.
(K4) Let τ ∈ H, z = a1τ + a2 with a = (a1, a2) ∈ Q2 − Z2, and further, let

q = e2πiτ and qz = e2πiz = e2πia2e2πia1τ . Then

ka(τ) = − 1

2πi
eπia2(a1−1)qa1(a1−1)/2(1− qz)

∞∏
n=1

(1− qnqz)(1− qnq−1
z )

(1− qn)2
,

and ordqka(τ) = ⟨a1⟩(⟨a1⟩ − 1)/2, where ⟨a1⟩ denotes the number such that
0 ≤ ⟨a1⟩ < 1 and a1 − ⟨a1⟩ ∈ Z.

(K5) Let f(τ) =
∏

a k
m(a)
a (τ) be a finite product of the Klein forms with

a = (r/N, s/N) ∈ (1/N)Z2 −Z2 for an integer N > 1, and let k = −
∑

a m(a).
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Then f(τ) is a modular function on Γ(N) if and only if k = 0 and{ ∑
a m(a)r2 ≡

∑
a m(a)s2 ≡ 0 (mod (2, N)N),∑

a m(a)rs ≡ 0 (mod N).

To obtain the information of cusps on Γ0(N) we require the following lemma.

Lemma 2.1. Let a, c, a′, c′ ∈ Z be such that (a, c) = 1 and (a′, c′) = 1. We
understand that ±1/0 = ∞. We denote the set of all the inequivalent cusps on
Γ0(N) by SΓ0(N). Then

(1) a/c and a′/c′ are equivalent under Γ0(N) if and only if there exist
s ∈ (Z/NZ)× and n ∈ Z such that (a′, c′) ≡ (s−1a+ nc, sc) (mod N).

(2) We may take SΓ0(N) as the following set:

SΓ0(N) =
{ac,j

c
∈ Q : 0 < c | N, 0 < ac,j ≤ N, (ac,j , N) = 1,

ac,j = ac,j′
def.⇐⇒ ac,j ≡ ac,j′ (mod (c,N/c))

}
.

(3) The width of the cusp a/c ∈ SΓ0(N) is N/(N, c2).

Proof. See [2, Corollary 4 (1)]. □

To determine the relation between two modular functions, we use the fol-
lowing lemma.

Lemma 2.2. For any congruence subgroup Γ, let f1(τ) and f2(τ) be noncon-
stant functions such that C(f1(τ), f2(τ)) = K(Γ) with the total degree Dk of
poles of fk(τ) for k = 1, 2. Let

F (X,Y ) =
∑

0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X,Y ]

be such that F (f1(τ), f2(τ)) = 0. For k = 1, 2, define the subsets Sk,0 and Sk,∞
of the set SΓ of all inequivalent cusps of Γ by

Sk,0 = {s ∈ SΓ : fk(τ) has zeros at s}
and

Sk,∞ = {s ∈ SΓ : fk(τ) has poles at s} .
Then we have CD2,0 ̸= 0 if S1,∞ ∩ S2,0 = ϕ.

Proof. See [6, Lemmas 3 and 6]. □

3. Continued fractions of order eighteen

By (1.2) and (K4), we write the continued fractions r18,j(τ) (j = 1, 2, 3, 4)
of order eighteen in the products of Klein forms. For simplicity, we use rj(τ)
instead of r18,j(τ).

(3.1)
r1(τ) = ζ2572

∏17
j=0

k(8/18,j/18)(τ)

k(1/18,j/18)(τ)
, r2(τ) = ζ−13

72

∏17
j=0

k(7/18,j/18)(τ)

k(2/18,j/18)(τ)
,

r3(τ) = ζ724
∏17

j=0
k(6/18,j/18)(τ)

k(3/18,j/18)(τ)
, r4(τ) = ζ−17

72

∏17
j=0

k(5/18,j/18)(τ)

k(4/18,j/18)(τ)
,
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where ζN = exp(2πi/N) is the Nth root of unity. Now, we are ready to show
the modularity of rj(τ) (j = 1, 2, 3, 4).

Theorem 3.1. For j = 1, 2, 3, and 4, the fourth powers rj(τ)
4 of the continued

fractions of order eighteen are modular functions on Γ1(18).

Proof. With some suitable roots of unity εj , we have

rj(τ)
4 = εj

17∏
l=0

k((9−j)/18,l/18)(τ)
4/k(j/18,l/18)(τ)

4.

To check the modularity, we require the condition (K5) for N = 18. Then∑
a

m(a)r2 = 18× 4((9− j)2 − j2) ≡ 0 (mod 36),∑
a

m(a)s2 = 0 ≡ 0 (mod 36)

and ∑
a

m(a)rs =

17∑
l=0

(4(9− j)l − 4jl) ≡ 0 (mod 18).

Hence, for j = 1, 2, 3, and 4, rj(τ)
4 is a modular function on Γ(18). From (1.2),

rj(τ)
4 are written as q-expansion, and this means that they are invariant under

the action of ( 1 1
0 1 ). Therefore, we prove that the fourth powers of all rj(τ) are

modular functions on ⟨Γ(18), ( 1 1
0 1 )⟩ = Γ1(18). □

We study the modularity of three Ramanujan’s continued fractions r1(τ),
r2(τ), and r4(τ) of order eighteen. Although none of their fourth powers are
not modular functions on Γ0(18), and the genus of Γ1(18) is not zero, we can
obtain certain modular functions on Γ0(18) comprising r1(τ), r2(τ) and r4(τ).

Lemma 3.2. Let γ :=
(

5 −2
18 −7

)
. Then,

r1(γτ) =
1

r4(τ)
, r2(γτ) =

1

r1(τ)
, and r4(γτ) = −r2(τ).

Proof. For simplicity, let Ki(τ) be the product of eighteen Klein forms:

Ki(τ) =

17∏
j=0

k( i
18 ,

j
18 )

(τ) (i = 1, . . . , 8).

By (K0)–(K2), we have the action of γ on the set {Kj(τ) : j = 1, 2, 4, 5, 7, 8}
upto the root of unity and factor (18τ − 7)−18:

K1(γτ) = (18τ − 7)−18ζ1336K5(τ), K2(γτ) = (18τ − 7)−18ζ18K8(τ),

K4(γτ) = (18τ − 7)−18ζ9K2(τ), K5(γτ) = (18τ − 7)−18ζ−1
3 K7(τ),

K7(γτ) = (18τ − 7)−18ζ−1
9 K1(τ), K8(γτ) = (18τ − 7)−18ζ−3

4 K4(τ).
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We already know the products of the Klein forms of r1(τ), r2(τ), and r4(τ)
in (3.1), and we have

r1(γτ) = ζ2572
K8(γτ)

K1(γτ)
= ζ2572

ζ−3
4 K4(τ)

ζ1336K5(τ)
=

1

r4(τ)
,

r2(γτ) = ζ−13
72

K7(γτ)

K2(γτ)
= ζ−13

72

ζ−1
9 K1(τ)

ζ18K8(τ)
=

1

r1(τ)
,

and

r4(γτ) = ζ−17
72

K5(γτ)

K4(γτ)
= ζ−17

72

ζ−1
3 K7(τ)

ζ9K4(τ)
= −r2(τ). □

Theorem 3.3. Consider a cubic polynomial P (X) in X defined as follows:

P (X) = (X − r1(τ)
4)

(
X − 1

r2(τ)4

)(
X − 1

r4(τ)4

)
.

Then P (X) is a cubic polynomial in K(Γ0(18))[X], that is,

P (X) = X3 − (g7 + 4g6 + 10g5 + 13g4 + 11g3 + 6g2 + 4g + 3)X2

+ (g6 + 4g5 + 10g4 + 14g3 + 12g2 + 8g + 3)X − (g + 1)4

g3 + 1
,

where g := g(τ) = 1/C(3τ), and C(τ) is in (1.3).

Proof. Note that r1(τ)
4 is a modular function on Γ1(18) by Theorem 3.1. Be-

cause [Γ0(18) : Γ1(18)] = 3, we may take γ :=
(

5 −2
18 −7

)
such that Γ0(18) =

∪2
j=0Γ1(18)γ

j . Assume that f(τ) = r1(τ)
4. By Lemma 3.2, γ acts on f(τ) as

follows:

f(γτ) =
1

r4(τ)4
and f(γ2τ) =

1

r2(τ)4
.

Then P (X) is written as f and γ:

P (X) = (X − r1(τ)
4)

(
X − 1

r2(τ)4

)(
X − 1

r4(τ)4

)
=

2∏
j=0

(
X − f(γjτ)

)
.

Now, all the coefficients of P (X) are elementary symmetric functions and are
invariant under the action of Γ0(18). Thus, they can be written as rational
functions of the generator of the field of modular functions on Γ0(18). Note
that g = 1/C(3τ) is a generator of K(Γ0(18)). To prove our theorem, we claim
the following:

(1) f(τ) + f(γτ) + f(γ2τ) = g7 +4g6 +10g5 +13g4 +11g3 +6g2 +4g+3,
(2) f(τ)f(γτ) + f(γτ)f(γ2τ) + f(τ)f(γ2τ) = g6 + 4g5 + 10g4 + 14g3 +

12g2 + 8g + 3,
(3) f(τ)f(γτ)f(γ2τ) = (g + 1)4/(g3 + 1).

Before proving (1), (2), and (3), we calculate the orders of the functions at
cusps on Γ0(18).
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Table 1. Orders of functions at cusps

cusp s ∞ 0 1/2 1/3 2/3 1/6 5/6 1/9

ordsf(τ) −7 0 1 0 0 −1/3 −1/3 0
ordsf(γτ) 5 0 1 0 0 −1/3 −1/3 0
ordsf(γ

2τ) 1 0 1 0 0 −1/3 −1/3 0
ords(1/C(3τ)) −1 0 0 0 0 0 0 1

Note that at a point s,

ords(h1(τ) + h2(τ)) ≥ min {ordsh1(τ), ordsh2(τ)}
and the equality holds if ordsh1(τ) ̸= ordsh2(τ).

Now, we prove our claims.
(1) Let h1(τ) := f(τ)+f(γτ)+f(γ2τ). At ∞, ord∞h1(τ) is min {−7, 5, 1} =

−7. When s is 1/6 or 5/6, ordsh1(τ) is greater than −1/3. Because h1(τ) is a
modular function on Γ0(18), and the order of h1(τ) is an integer, we have that
ord1/6h1(τ) and ord5/6h1(τ) are nonnegative. That is, the only pole of h1(τ)
is ∞ and its order is −7. We apply Lemma 2.2 to find the relation between
h1(τ) and g(τ) by taking f1(τ) = g(τ) and f2(τ) = h1(τ) in Lemma 2.2. Then
D1 = 1 and D2 = 7, and we obtain a two variable polynomial F (X,Y ):

F (X,Y ) =
∑

0≤i≤7
0≤j≤1

Ci,jX
iY j

such that F (g(τ), h1(τ)) = 0. Because S1,∞ = S2,∞ = {∞}, we have that
S1,∞ ∩ S2,0 = ϕ and C7,0 ̸= 0. If we take C7,0 = 1, then we find

F (X,Y ) = X7 + 4X6 + 10X5 + 13X4 + 11X3 + 6X2 + 4X + 3− Y

by substituting the q-expansions of g(τ) and h1(τ) to X and Y , respectively.
This means that

h1(τ) = g7 + 4g6 + 10g5 + 13g4 + 11g3 + 6g2 + 4g + 3.

(2) Let h2(τ) := f(τ)f(γτ)+f(γτ)f(γ2τ)+f(γ2τ)f(τ). Similar to the case
of h1(τ), we have the following:

• at ∞, ord∞h2(τ) ≥ min {−2, , 6,−6} = −6, and we have ord∞h2(τ) =
−6,

• when s = 1/6 or 5/6, ordsh2(τ) ≥ min {−2/3,−2/3,−2/3}. Because
ordsh2(τ) is an integer, we have ordsh2(τ) ≥ 0, and

• when s = 0, 1/2, 1/3, 2/3 or 1/9, ordsh2(τ) ≥ 0.

Hence, ∞ is the only pole of h2(τ) and ord∞h2(τ) = 6. Consider a polynomial
F (X,Y ) =

∑
0≤i≤6
0≤j≤1

Ci,jX
iY j satisfying F (g(τ), h2(τ)) = 0. By taking f1(τ) =

g(τ) and f2(τ) = h2(τ) in Lemma 2.2, we may take C6,0 = 1 and obtain the
relation

h2(τ) = g6 + 4g5 + 10g4 + 14g3 + 12g2 + 8g + 3.
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(3) Let h3(τ) be the product of functions f(τ), f(γτ), and f(γ2τ). From
Table 2, we obtain the exact order of h2(τ) at all cusps:

ordsh3(τ) =

 3 if s = 1/2,
−1 if s = ∞, 1/6, 5/6,
0 otherwise.

Now, we use Lemma 2.2 and set f1(τ) = g(τ) and f2(τ) = h3(τ). Then
S1,∞ = {∞}, S2,∞ = {∞, 1/6, 5/6}, S1,0 = {1/9}, and S2,0 = {1/2}. Thus, we
obtain the polynomial

F (X,Y ) =
∑

0≤i≤3
0≤j≤1

Ci,jX
iY j

with F (g(τ), h3(τ)) = 0. Because S1,∞ ∩ S2,0 = ϕ, we take C3,0 = 1 and we
obtain

F (X,Y ) = 1− Y + 3X +XY + 3X2 −X2Y +X3.

Hence,

h3(τ) =
g3 + 3g2 + 3g + 1

g2 − g + 1
=

(g + 1)4

g3 + 1
. □

4. Evaluations of r18,1(τ ), r18,2(τ ), r18,3(τ ), and r18,4(τ )

For an imaginary quadratic value τ , 1/C(τ) is an algebraic integer ([3, The-
orem 16]). By (1.4), we have that r3(τ) is also an algebraic integer and r1(τ),
r2(τ), r4(τ) are algebraic numbers. In this section, we evaluate rj(τ) by the
value of C(τ) at some imaginary quadratic quantities τ .

Example 4.1. By (1.4), we obtain r3(τ)
4 = 1 + 1/C(3τ)3.

(1) From [1, Theorem 4.1(ii) and Corollary 4.3], C(
√

−1/3) = 2−4/3(
√
3−1),

and we have r3(
√
−1/27)4 = 1 + 1/C(

√
−1/3)3 = 6(1 +

√
3)
(√

3− 1
)−3

. By

solving the quartic equation X4−6(1+
√
3)
(√

3− 1
)−3

, we have its four zeros:√
3 + 2

√
3, −

√
3 + 2

√
3,

√
−3− 2

√
3, and −

√
−3− 2

√
3.

By comparing the approximation of r3(
√
−1/27) ≈ 2.542459758 with the above

four values, we obtain that

r3

(√
− 1

27

)
=

√
3 + 2

√
3,

because
√
3 + 2

√
3 ≈ 2.542459757.

(2) Similar to (1), we use the value

C

(√
− 2

3

)
=

(4+2
√
2)

2/3√
2

8 −

√
2 (4+2

√
2)

4/3
+16

3
√

4+2
√
2−16

3
√

4+2
√
2
√
2

8
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which can be obtained from [1, Theorem 4.5(i)], and we have

r3

(√
− 2

27

)4

=
1

C(
√

−2/3)3
+ 1 =

3(3 +
√
2−

√
3)

1 + 3
√
2− 3

√
3
.

Solving the quartic equation X4 − 3(3 +
√
2 −

√
3)(1 + 3

√
2 − 3

√
3)−1 and

comparing the approximation of r3(
√

−2/27) to its zeros, we conclude that

r3

(√
− 2

27

)
=

(
3(3 +

√
2−

√
3)

1 + 3
√
2− 3

√
3

)1/4

.

(3) From [1, Theorem 4.5(iii)], C(i) = (33/4
√
2−

√
3−1)/4, in a similar way,

we have

r3

(
i

3

)
=

√
33/4

√
8 + 6 + 35/4

√
2 + 3

√
3.

(4) By the value C(
√
−2) =

√
2(
√
3 +

√
2 − 3)/4 from [1, Theorems 4.6(i)

and 4.10(i)], we have

r3

(√
−2

3

)
=

√
21 + 15

√
2 + 12

√
3 + 9

√
6.

For an imaginary quadratic value τ , the evaluations of r1(τ), r2(τ), and
r4(τ) can be also obtained from C(3τ). First, we write the value of C(3τ) in
terms of the radical using some values in [1]. With value g = 1/C(3τ) and
cubic polynomial P (X) from Theorem 3.3, we have the set of the three zeros of
P (X) = 0 and it is exactly the same as

{
r1(τ)

4, 1/r2(τ)
4, 1/r4(τ)

4
}
. Compar-

ing one of the zeros with the approximations of r1(τ)
4, 1/r2(τ)

4, 1/r4(τ)
4, we

can determine which of them is in
{
r1(τ)

4, 1/r2(τ)
4, 1/r4(τ)

4
}
. In addition, if

we consider their fourth roots, we obtain the explicit values of rj(τ) for j = 1, 2,
and 4 in terms of radicals.

Example 4.2. We can obtain r1(
√
−1/27), r2(

√
−1/27), and r4(

√
−1/27)

in terms of radical. Instead of these we write r1(
√

−1/27)4, 1/r2(
√

−1/27)4,

and 1/r4(
√

−1/27)4. Here, we use value g = g(
√

−1/27) = 1/C(
√

−1/3) =

21/3(
√
3 + 1). The polynomial P (X),

P (X) = X3 −
(

512 3√2

(
√
3−1)

7 + 1024

(
√
3−1)

6 + 640 3√4

(
√
3−1)

5 + 416 3√2

(
√
3−1)

4 + 176

(
√
3−1)

3 + 24 3√4

(
√
3−1)

2 + 8 3√2√
3−1

+ 3

)
X2

+

(
256

(
√
3−1)

6 + 256 3√4

(
√
3−1)

5 + 320 3√2

(
√
3−1)

4 + 224

(
√
3−1)

3 + 48 3√4

(
√
3−1)

2 + 16 3√2√
3−1

+ 3

)
X

−
(

16

(
√
3−1)

3 + 12 3√4

(
√
3−1)

2 + 6 3√2√
3−1

+ 1

)(
4 3√4

(
√
3−1)

2 − 2 3√2√
3−1

+ 1

)−1

,

in Theorem 3.3 has three zeros as follows:

r1

(√
−1/27

)4
= 4

3
3
√
α− 3

4

β
3
√
α
+ 3551

3 + 3004
3

3
√
2 + 1544

3
3
√
4 + 684

√
3

+ 1732
3

3
√
2
√
3 + 892

3
3
√
4
√
3,
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1

r2
(√

−1/27
)4 = − 2

3
3
√
α+ 3

8
β
3
√
α
+ 684

√
3 + 1732

3
3
√
2
√
3 + 3551

3

+ 892
3

3
√
4
√
3 + 1544

3
3
√
4 + 3004

3
3
√
2 + i

√
3

2

(
4
3

3
√
α+ 3

4
β
3
√
α

)
,

1

r4
(√

−1/27
)4 = − 2

3
3
√
α+ 3

8
β
3
√
α
+ 684

√
3 + 1732

3
3
√
2
√
3 + 3551

3

+ 892
3

3
√
4
√
3 + 1544

3
3
√
4 + 3004

3
3
√
2− i

√
3

2

(
4
3

3
√
α+ 3

4
β
3
√
α

)
,

where

α = 12342300669
3
√
4 + 11233679274

√
3 + 7125830613

3
√
4
√
3

+ 15500248362
3
√
2 + 8949072564

3
√
2
√
3 + 19457303256

+ 18 i
√
6596748678

3
√
4 + 6051480246

√
3 + 3808634625

3
√
4
√
3 + 8316687954

3
√
2 + 10481471247 + 4801642029

3
√
2
√
3,

β = − 17399648

3
3
√
2− 3998496

√
3− 10045696

3
3
√
2
√
3− 2564032

3
√
4
√
3

− 6925600− 13323104

3
3
√
4.
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