• Title/Summary/Keyword: the automorphism group

Search Result 90, Processing Time 0.023 seconds

ON AUTOMORPHISM GROUPS OF AN є-FRAMED MANIFOLD

  • Kim, J.S.;Cho, J.H.;Tripathi, M.M.;Prasad, R.
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.635-645
    • /
    • 2002
  • Two examples of $\varepsilon$-famed manifolds are constructed. It is proved that an $\varepsilon$-framed structure on a manifold is not unique. Automorphism groups of r-framed manifolds are studied. Lastly we prove that a connected Lie group G admits a left invariant normal $\varepsilon$-framed structure if and only if the Lie algebra of all left invariant vector fields on G is an $\varepsilon$-framed Lie algebra.

ON GALOIS GROUPS FOR NON-IRREDUCIBLE INCLUSIONS OF SUBFACTORS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.99-110
    • /
    • 1999
  • We apply sector theory to obtain some characterization on Gaois groups for subfactors. As an example of a non-irreducible inclusion of small index, a locally trivial inclusion arising from an automorphism is considered and its Galois group is completely determined by using sector theory.

  • PDF

SPLITTINGS FOR THE BRAID-PERMUTATION GROUP

  • Jeong, Chan-Seok;Song, Yong-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.179-193
    • /
    • 2003
  • The braid-permutation group is a group of welded braids which is the extension of Artin's braid groups by the symmetric groups. It is also described as a subgroup of the automorphism group of a free group. We also show that the plus-construction of the classifying space of the infinite braid-permutation group has the following two types of splittings BBP(equation omitted) B∑(equation omitted) $\times$ X, BBP(equation omitted) B $^{+}$$\times$ Y=S$^1$$\times$Y, where X, Y are some spaces.

QUATERNIONIC HEISENBERG GROUP

  • Shin, Joonkook;Hong, Sungsook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.123-135
    • /
    • 2003
  • We shall study the automorphism group of the quaternionic Heisenberg group $\mathcal{H}_7(\mathbb{H})=\mathbb{R}^3{\tilde{\times}}\mathbb{H}$ which is important to investigate an almost Bieberbach group of a 7-dimensinal infra-nilmanifold and show that Aut$$(\mathbb{R}^3{\tilde{\times}}\mathbb{R}^4){\sim_=}Hom(\mathbb{R}^4,\mathbb{R}^3){\rtimes}O(J;2,2)$$.

  • PDF

HARMONIC MAPS BETWEEN THE GROUP OF AUTOMORPHISMS OF THE QUATERNION ALGEBRA

  • Kim, Pu-Young;Park, Joon-Sik;Pyo, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.331-339
    • /
    • 2012
  • In this paper, let Q be the real quaternion algebra which consists of all quaternionic numbers, and let G be the Lie group of all automorphisms of the algebra Q. Assume that g is an arbitrary given left invariant Riemannian metric on the Lie group G. Then, we obtain a necessary and sufficient condition for an automorphism of the group G to be harmonic.

THE HOMOLOGY HOMOMORPHISM INDUCED BY HARER MAP

  • Lee, Deogju;Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.409-421
    • /
    • 2011
  • We study a natural map from the braid group to the mapping class group which is called Harer map. It is rather new and different from the classical map which was studied in 1980's by F. Cohen, J. Harer et al. We show that this map is homologically trivial for most coefficients by using the fact that this map factors through the symmetric group.

NORMAL SYSTEMS OF COORDINATES ON MANIFOLDS OF CHERN-MOSER TYPE

  • Schmalz, Gerd;Spiro, Andrea
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.461-486
    • /
    • 2003
  • It is known that the CR geometries of Levi non-degen-erate hypersurfaces in $\C^n$ and of the elliptic or hyperbolic CR submanifolds of codimension two in $\C^4$ share many common features. In this paper, a special class of normalized coordinates is introduced for any CR manifold M which is one of the above three kinds and it is shown that the explicit expression in these coordinates of an isotropy automorphism $f{\in}Aut(M)_o {\subset}Aut(M),\;o{\in}M$, is equal to the expression of a corresponding element of the automorphism group of the homogeneous model. As an application of this property, an extension theorem for CR maps is obtained.

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES

  • Ma, Xiaobin;Wang, Dengyin;Zhou, Jinming
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.519-532
    • /
    • 2016
  • The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.

A BOUNDED KOHN NIRENBERG DOMAIN

  • Calamai, Simone
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1339-1345
    • /
    • 2014
  • Building on the famous domain of Kohn and Nirenberg we give an example of a domain which shares the important features of the Kohn Nirenberg domain, but which can also be shown to be ${\phi}$-bounded As an application, we remark that this example has compact automorphism group.