1 |
E. Artin, Theorie der Zopfe, Abh. Math. Sem. Univ. Hamburg 4 (1926), 47-72.
|
2 |
C.-F. Bodigheimer and U. Tillmann, Stripping and splitting decorated mapping class groups, Cohomological methods in homotopy theory (Bellaterra, 1998), 47-57, Progr. Math., 196, Birkhauser, Basel, 2001.
|
3 |
F. R. Cohen, T. J. Lada, and J. P. May, The homology of iterated loop space, Lecture Notes in Mathematics 533, Springer-Verlag, 1976.
|
4 |
S. Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. (2) 173 (2) (2011), 705-768.
|
5 |
J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (2) (1985), 215-249.
DOI
|
6 |
A. Hatcher and K. Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (3) (1998), 633-655.
DOI
|
7 |
A. Hatcher and K. Vogtmann, Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004), 1253-1272.
DOI
|
8 |
N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Algebra i Analiz 1 (3) (1989), 110-126.
|
9 |
N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Leningrad Math. J. 1 (3) (1990), 675-691.
|
10 |
M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math. (2) 71 (1960), 16-42.
DOI
|
11 |
J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (3) (1978), 347-350.
DOI
ScienceOn
|
12 |
G. Segal, Configuration spaces and iterated loop spaces, Invent. Math. 21 (1973), 213-221.
DOI
|
13 |
U. Tillmann, Artin's map in stable homology, Bull. Lond. Math. Soc. 39 (6) (2007), 989-992.
DOI
ScienceOn
|
14 |
J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology 11 (1972), 349-370.
DOI
ScienceOn
|