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QUATERNIONIC HEISENBERG GROUP

Joonkook Shin* and Sungsook Hong**

Abstract. We shall study the automorphism group of the quater-

nionic Heisenberg group H7(H) = R
3×̃H which is important to inves-

tigate an almost Bieberbach group of a 7-dimensinal infra-nilmanifold

and show that Aut(R3×̃R
4) ∼= Hom(R4,R3) ⋊ O(J ; 2, 2).

1. Introduction

The complex Heisenberg group H2n+1(C) = R×̃Cn with group

operation given by

(s, z)(t, z′) = (s + t + 2Im{zz̄′}, z + z′)

for z = (z1, z2, · · · , zn), z′ = (z′1, z
′

2, · · · , z
′

n) ∈ Cn, where Im {zz̄′} is

the imaginary part of the complex number z1z̄
′

1 + z2z̄
′

2 + · · · + znz̄′n

is a simply connected 2-step nilpotent Lie group with the center

Z(H2n+1(C)) = R. Let M be an infra-nilmanifold with H2n+1(C)-

geometry. It is well known (see for example [4]) that an almost Bieber-

bach group contains a cocompact lattice of H2n+1(C) with index

bounded above by a universal constant I. That is, I is the max-

imal order of the holonomy groups. It is shown in [7] that when

n = 2, I = 24.

For the case of the quaternionic Heisenberg group H4n+3(H) =

R3×̃Hn with group operation given by

(s, q)(t, q′) = (s + t + 2Im{qq̄′}, q + q′)
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for q = (q1, q2, · · · , qn), q′ = (q′1, q
′

2, · · · , q
′

n) ∈ Hn, where Im {qq̄′} is

the imaginary part of the quaternion number q1q̄
′

1 + q2q̄
′

2 + · · ·+ qn q̄′n

seen as an element of R3, it is shown in [3] that when n = 1, I2 = 48.

The number I2 is significant in its own right. According to a recent

work ( see [5, Corollary 5.3]), it is related to the minimum volume of

a quaternionic hyperbolic orbifolds.

For q = x1 + ix2 + jx3 + kx4 ∈ H, write

q(1) = x1, q(i) = x2, q(j) = x3, q(k) = x4.

Also we define

q̄ = x1 − ix2 − jx3 − kx4

q̆ = −x1 + ix2 − jx3 − kx4.

For q, q′ ∈ H, we define q ⊙ q′ as follows:

q ⊙ q′ = qq̆′(1) + qq̆′(i) + qq̄′(j) + qq̄′(k).

The main concern of this paper is the quaternionic Heisenberg

group H4n+3(H) = R3×̃Hn with group operation given by

(s, q)(t, q′) = (s + t + 2Im{q ⊙ q′}, q + q′)

for q = (q1, q2, · · · , qn), q′ = (q′1, q
′

2, · · · , q
′

n) ∈ Hn, where Im {q⊙q′} is

the imaginary part of the quaternion number q1⊙q′1+q2⊙q′2+· · ·+qn⊙

q′n seen as an element of R3. Then H4n+3(H) is a simply connected

2-step nilpotent Lie group with the center Z(H4n+3(H)) = R3.

Let M be an infra-nilmanifold with H4n+3(H)-geometry; that is,

M = Π\H4n+3(H), where Π ⊂ H4n+3(H)⋊C is a torsion free, discrete

subgroup with compact quotient, where C is a compact subgroup of

Aut(H4n+3(H)). Such a group Π is called an almost Bieberbach group

(= AB-group). Since

Π ∩ Z(H4n+3(H)) ∼= Z
3
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is a lattice of Z(H4n+3(H)), M fits

T 3 →M → N,

a Seifert 3-torus “bundle” over a 4n-dimensional flat orbitfold. When

there is no singular point, it is a genuine bundle over the base space

N which is a flat Riemannian 4n-manifold.

In this paper, we shall study the automorphism group of H7(H) =

R3×̃H and show that Aut(R3×̃R4) ∼= Hom(R4, R3) ⋊ O(J ; 2, 2).

2. The Quaternionic Heisenberg Group

From now on, we shall use R3×̃R4 rather than R3×̃H. We identify

R3×̃H with R3×̃R4 by

(s, q = x1 + ix2 + jx3 + kx4)←→ (s, x = [x1, x2, x3, x4]
t).

Accordingly, we introduce a new notation for Im {q ⊙ q′}. For

x =





x1

x2

x3

x4



 , y =





y1

y2

y3

y4





define

I(x, y)

=

(∣∣∣∣
x1 y1

x2 y2

∣∣∣∣−
∣∣∣∣
x3 y3

x4 y4

∣∣∣∣ ,−

∣∣∣∣
x1 y1

x3 y3

∣∣∣∣−
∣∣∣∣
x4 y4

x2 y2

∣∣∣∣ ,−

∣∣∣∣
x1 y1

x4 y4

∣∣∣∣−
∣∣∣∣
x2 y2

x3 y3

∣∣∣∣

)t

= (xtJ1y, xtJ2y, xtJ3y)t,

where ()t denotes the transpose of a matrix, and

J1 =





0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0



 , J2 =





0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0



 ,

J3 =





0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0



 .
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Clearly I(x, y) = −I(y, x) and I(x, y) corresponds to Im {q ⊙ q′}.

Thus the group operation in R3×̃R4 becomes

(s, x)(t, y) = (s + t + 2I(x, y), x + y).

Since I(x,±x) = 0, we see easily that

(s, x)−1 = (−s,−x).

Thus we have

[(s, x), (t, y)] = (s, x)−1(t, y)−1(s, x)(t, y) = (4I(x, y), 0).

Therefore the center of R3×̃R4, Z(R3×̃R4) is R3. Thus we have shown

the following lemma.

Lemma 2.1. R3×̃R4 is a simply connected 2-step nilpotent Lie

group with the center Z(R3×̃R4) = R3. �

Let

σ =





−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 ,

and

Ki = σ−1Jiσ, i = 1, 2, 3.

Then J1, J2, J3 together with K1, K2, K3 form a linear basis for

the vector space so(4) of the skew-symmetric matrices. Therefore,

so(4) =< J1, J2, J3 > ⊕ < K1,K2,K3 >

as vector spaces. Notice that each subspace fail to be a Lie subalgebra.

In order to understand the automorphism group of R3×̃R4, we need

to study more general setting: For any C ∈ GL(4, R) and V ∈ so(4),

JC(V ) = CtV C
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defines a linear isomorphism JC : so(4) → so(4). In fact, with re-

spect to the basis {J1, J2, J3,K1,K2,K3}, it turns out that det(JC) =

(det(C))3.

Define

O(J ; 2, 2) = {C ∈ GL(4, R) | CtJiC ∈< J1, J2, J3 >}.

That is, C ∈ O(J ; 2, 2) if and only if the map JC leaves the subspace

spanned by J1, J2, J3 invariant. Therefore,

CtJiC = λi1J1 + λi2J2 + λi3J3, λij ∈ R,

for i = 1, 2, 3. It turns out then, the matrix λ = (λij) is non-singular.

Now we form the column vector

J =




J1

J2

J3





with entries the matrices J1, J2, J3. With some abuse of notation, we

can write

O(J ; 2, 2) = {C ∈ GL(4, R) | CtJC = λJ, λ ∈ GL(3, R)}.

Clearly C ∈ O(J ; 2, 2) is a closed subgroup of GL(4, R). For C ∈

O(J ; 2, 2), let Ĉ ∈ GL(3, R) denote the nonsingular 3 × 3 matrix λ

which satisfies CtJC = λJ . So,

CtJC = ĈJ.

Then a map C → Ĉ defines a homomorphism ̂ : O(J ; 2, 2) →

GL(3, R).

Note that as a map JC : so(4) → so(4), with respect to the

ordered basis {J1, J2, J3,K1,K2,K3}, JC is of the form

JC =

[
Ĉ 0
0 ∗

]
.
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Since the center, Z(R3×̃R4) = R3, is a characteristic subgroup of

R3×̃R4, every automorphism of R3×̃R4 restricts to an automorphism

of R3. Consequently an automorphism of R3×̃R4 induces an auto-

morphism on the quotient group R4. Thus there is a natural homo-

morphism Aut(R3×̃R4)→ Aut(R3) ×Aut(R4) defined by θ 7→ (θ̂, θ̄).

Lemma 2.2. Im { Aut(R3×̃R4) → Aut(R4)} = O(J ; 2, 2). More-

over, the exact sequence Aut(R3×̃R4)→ O(J ; 2, 2)→ 1 splits.

Proof. Let θ ∈ Aut(R3×̃R4). Then

(θ̂, θ̄) ∈ Aut(R3)× Aut(R4).

Since [(s, x), (t, y)] = (4I(x, y), 0),

θ[(s, x), (t, y)] = θ(4I(x, y), 0) = (θ̂(4I(x, y)), θ̄(0) )

= (4θ̂(I(x, y)), 0)

and

[θ(s, x), θ(t, y)] = [(∗, θ̄(x)), (∗, θ̄(y)] = (4I(θ̄(x), θ̄(y)), 0)

yield

I(θ̄(x), θ̄(y)) = θ̂(I(x, y)),

or, equivalently,

(θ̄(x)tJ1θ̄(y), θ̄(x)tJ2θ̄(y), θ̄(x)tJ3θ̄(y))t = θ̂ · (xtJ1y, xtJ2y, xtJ3y)t

for all x, y. This happens if and only if θ̄tJθ̄ = θ̂J . Therefore, θ̄ ∈

O(J ; 2, 2).

Conversely, suppose that θ̄ ∈ O(J ; 2, 2), i.e., θ̄tJθ̄ = λJ is satisfied

for some λ ∈ GL(3, R). We define θ : R3×̃R4 → R3×̃R4 by

θ(s, x) = (λ · s, θ̄(x)).
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Then

θ((s, x) · (t, y)) = θ(s + t + 2I(x, y), x + y)

= (λ · (s + t + 2I(x, y)), θ̄(x + y))

= (λ · s + λ · t + λ · 2I(x, y), θ̄(x + y)),

θ(s, x) · θ(t, y) = (λ · s, θ̄(x)) · (λ · t, θ̄(y))

= (λ · s + λ · t + 2I(θ̄(x), θ̄(y)), θ̄(x) + θ̄(y)).

Now the condition θ̄tJθ̄ = λJ guarantees that

λ · I(x, y) = I(θ̄(x), θ̄(y)).

Thus θ is an automorphism of R3×̃R4. Moreover, this defines a split

homomorphism O(J ; 2, 2)→ Aut(R3×̃R4). �

Proposition 2.3. ( Structure of Aut (R3×̃R4) )

Aut(R3×̃R
4) ∼= Hom(R4, R3) ⋊ O(J ; 2, 2)

where an element (η,A) ∈ Hom(R4, R3) ⋊ O(J ; 2, 2) acts by

(η,A)(s, x) = (Âs + η(x), Ax).

Proof. Let θ ∈ Aut(R3×̃R4). Then we have the following commu-

tative diagram of exact sequences

1 −−−−→ R3 −−−−→ R3×̃R4 −−−−→ R4 −−−−→ 1
yθ̂

yθ

yθ̄

1 −−−−→ R3 −−−−→ R3×̃R4 −−−−→ R4 −−−−→ 1

Thus

θ(s, x) = (θ̂(s) + η(s, x), θ̄(x))
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for (s, x) ∈ R3×̃R4, where η : R3×̃R4 → R3. Since θ is a homomor-

phism, one can show that η is a homomorphism, i.e.,

η((s, x)(t, y)) = η(s, x) + η(t, y).

In particular, set x = 0.

(θ̂(s), 0) = θ(s, 0) = (θ̂(s) + η(s, 0), 0)

implies that η(s, 0) = 0 for all s ∈ R3, and thus

η(s, x) = η((s, 0)(0, x)) = η(s, 0) + η(0, x) = η(0, x).

Hence η ∈ Hom (R4, R3).

Let us find out the kernel of the surjective homomorphism of Lemma

2.2:

Aut(R3×̃R
4)→ O(J ; 2, 2), θ 7→ θ̄.

Suppose that θ ∈ Aut(R3×̃R4) with θ̄ =idR4 . Then θ̂ = idR3 and thus

θ(s, x) = (s + η(x), x)

for some η ∈ Hom(R4, R3).

Conversely given η ∈ Hom(R4, R3), define θ ∈ Aut(R3×̃R
4) by

θ(s, x) = (s + η(x), x). Clearly this θ lies in the kernel of the homo-

morphism. Hence we have a short exact sequence

1→ Hom(R4, R3)→ Aut(R3×̃R
4)→ O(J ; 2, 2)→ 1.

By Lemma 2.2, this sequence splits. �

Note that Hom(R4, R3) ⋊ O(J ; 2, 2) is sitting inside

Hom(R4, R3) ⋊ (GL(3, R)×O(J ; 2, 2))
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as (η, (Â, A)), and the action of O(J ; 2, 2) on Hom(R4, R3) is

Aη(x) = Â · η(A−1x).

The group operation on (R3×̃R4) ⋊ O(J ; 2, 2) is given by

((s, x), A)((t, y), B) = ((s, x) ·A (t, y), AB)

= ((s, x) · (Ât, Ay), AB)

= ((s + Ât + 2I(x,Ay), x + Ay), AB).

3. Application

Let Π ⊂ R3×̃R4⋊Aut(R3×̃R4) be an AB-group. Then it is well

known that Γ = Π ∩ (R3×̃R4), the pure translations in Π, is the

maximal normal nilpotent subgroup, and Φ = Π/Γ, the holonomy

group of Π, is finite. Since Γ is a lattice of R3×̃R4, Γ ∩ Z(R3×̃R4)

is a lattice of Z(R3×̃R4) = R3, and Γ/Γ ∩ Z(R3×̃R4) is a lattice of

R3×̃R4/Z(R3×̃R4) = R4. Thus

Γ ∩ Z(R3×̃R
4) ∼= Z

3

and

Γ/Γ ∩ Z(R3×̃R
4) ∼= Z

4.
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Consider the following natural commutative diagram:

1 1
y

y

R3 −−−−→
=

R3

y
y

1 −−−−→ R3×̃R4 −−−−→ R3×̃R4 ⋊ Aut(R3×̃R4) −−−−→ Aut(R3×̃R4) −−−−→ 1
y

y
y=

1 −−−−→ R4 −−−−→ R4 ⋊ Aut(R3×̃R4) −−−−→ Aut(R3×̃R4) −−−−→ 1
y

y

1 1

Recall from Proposition 2.3 that an element

(η,A) ∈ Aut(R3×̃R
4) = Hom(R4, R3) ⋊ O(J ; 2, 2)

acts on (s, x) ∈ R3×̃R4 by

(η,A)(s, x) = (Âs + η(x), Ax).

Thus O(J ; 2, 2) acts on R3 via the homomorphism

̂: O(J ; 2, 2)→ GL(3, R),

and O(J ; 2, 2) acts on R4 by matrix multiplication O(J ; 2, 2)×R4 →

R4.

Let Q = Π/Z3. Then the above diagram induces the following
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commutative diagram:

1 1
y

y

Z3 −−−−→
=

Z3

y
y

1 −−−−→ Γ −−−−→ Π −−−−→ Φ −−−−→ 1
y

y
y=

1 −−−−→ Z4 −−−−→ Q −−−−→ Φ −−−−→ 1
y

y

1 1

Here Φ ⊂ O(J ; 2, 2) acts on Z4 by matrix multiplication, and on Z3

via the homomorphism :̂ O(J ; 2, 2)→ GL(3, R).

Recall from [6, Proposition 2] that a virtually free abelian group

1→ Z
4 → Q→ Φ→ 1

is a crystallographic group if and only if the centralizer of Z4 in Q has

no torsion elements. Since Φ acts effectively on Z4, it follows that Q

is naturally a 4-dimensional crystallographic group.

Let Π be an AB-group for R3×̃R4. Then Π is a torsion free exten-

sion of Z3 by a 4-dimensional crystallographic group Q so that

1→ Z
3 → Π→ Q→ 1

is exact.

Construction from Q. For each 4-dimensional crystallographic group

Q, we shall check if there exists a construction from Q; that is, a tor-

sion free Π ⊂ H7(H)⋊ Aut(H7(H)) fitting the short exact sequence



134 J. SHIN AND S. HONG

1→ Z
3 → Π→ Q→ 1.

This is the key notion for our arguments and construction. We

have a complete classification of 4-dimensional crystallographic groups

(Q’s in the above statement). There are 4783 4-dimensional crystal-

lographic groups up to isomorphism. We shall use the presentations

of the 4-dimensional crystallographic groups given in the book [1]:

H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassen-

haus, Crystallographic Groups of Four-Dimensional Spaces, John Wi-

ley Sons, New York, 1978.

The crystallographic groups will be called Q, and every Q has an

explicit representation Q→ R4⋊ GL(4, Z) in this book.
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