QUATERNIONIC HEISENBERG GROUP

Joonkook Shin* and Sungsook Hong**

Abstract

We shall study the automorphism group of the quaternionic Heisenberg group $\mathcal{H}_{7}(\mathbb{H})=\mathbb{R}^{3} \tilde{\times} \mathbb{H}$ which is important to investigate an almost Bieberbach group of a 7-dimensinal infra-nilmanifold and show that $\operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \cong \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rtimes O(J ; 2,2)$.

1. Introduction

The complex Heisenberg group $\mathcal{H}_{2 n+1}(\mathbb{C})=\mathbb{R} \tilde{x} \mathbb{C}^{n}$ with group operation given by

$$
(s, z)\left(t, z^{\prime}\right)=\left(s+t+2 \operatorname{Im}\left\{z \bar{z}^{\prime}\right\}, z+z^{\prime}\right)
$$

for $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right), z^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{n}^{\prime}\right) \in \mathbb{C}^{n}$, where $\operatorname{Im}\left\{z \bar{z}^{\prime}\right\}$ is the imaginary part of the complex number $z_{1} \bar{z}_{1}^{\prime}+z_{2} \bar{z}_{2}^{\prime}+\cdots+z_{n} \bar{z}_{n}^{\prime}$ is a simply connected 2-step nilpotent Lie group with the center $\mathcal{Z}\left(\mathcal{H}_{2 n+1}(\mathbb{C})\right)=\mathbb{R}$. Let M be an infra-nilmanifold with $\mathcal{H}_{2 n+1}(\mathbb{C})$ geometry. It is well known (see for example [4]) that an almost Bieberbach group contains a cocompact lattice of $\mathcal{H}_{2 n+1}(\mathbb{C})$ with index bounded above by a universal constant I. That is, I is the maximal order of the holonomy groups. It is shown in [7] that when $n=2, I=24$.

For the case of the quaternionic Heisenberg group $\mathcal{H}_{4 n+3}(\mathbb{H})=$ $\mathbb{R}^{3} \tilde{\times} \mathbb{H}^{n}$ with group operation given by

$$
(s, q)\left(t, q^{\prime}\right)=\left(s+t+2 \operatorname{Im}\left\{q \bar{q}^{\prime}\right\}, q+q^{\prime}\right)
$$

Received by the editors on June 24, 2003.
2000 Mathematics Subject Classifications: Primary 57S25, 57S17.
Key words and phrases: quaternionic Heisenberg group, ifra-nilmanifold, crystallographic group.
for $q=\left(q_{1}, q_{2}, \cdots, q_{n}\right), q^{\prime}=\left(q_{1}^{\prime}, q_{2}^{\prime}, \cdots, q_{n}^{\prime}\right) \in \mathbb{H}^{n}$, where $\operatorname{Im}\left\{q \bar{q}^{\prime}\right\}$ is the imaginary part of the quaternion number $q_{1} \bar{q}_{1}^{\prime}+q_{2} \bar{q}_{2}^{\prime}+\cdots+q_{n} \bar{q}_{n}^{\prime}$ seen as an element of \mathbb{R}^{3}, it is shown in [3] that when $n=1, I_{2}=48$. The number I_{2} is significant in its own right. According to a recent work (see [5, Corollary 5.3]), it is related to the minimum volume of a quaternionic hyperbolic orbifolds.

For $q=x_{1}+i x_{2}+j x_{3}+k x_{4} \in \mathbb{H}$, write

$$
q(1)=x_{1}, q(i)=x_{2}, q(j)=x_{3}, q(k)=x_{4} .
$$

Also we define

$$
\begin{gathered}
\bar{q}=x_{1}-i x_{2}-j x_{3}-k x_{4} \\
\breve{q}=-x_{1}+i x_{2}-j x_{3}-k x_{4} .
\end{gathered}
$$

For $q, q^{\prime} \in \mathbb{H}$, we define $q \odot q^{\prime}$ as follows:

$$
q \odot q^{\prime}=q \bar{q}^{\prime}(1)+q \breve{q^{\prime}}(i)+q \overline{q^{\prime}}(j)+q \overline{q^{\prime}}(k)
$$

The main concern of this paper is the quaternionic Heisenberg group $\mathcal{H}_{4 n+3}(\mathbb{H})=\mathbb{R}^{3} \tilde{\times} \mathbb{H}^{n}$ with group operation given by

$$
(s, q)\left(t, q^{\prime}\right)=\left(s+t+2 \operatorname{Im}\left\{q \odot q^{\prime}\right\}, q+q^{\prime}\right)
$$

for $q=\left(q_{1}, q_{2}, \cdots, q_{n}\right), q^{\prime}=\left(q_{1}^{\prime}, q_{2}^{\prime}, \cdots, q_{n}^{\prime}\right) \in \mathbb{H}^{n}$, where $\operatorname{Im}\left\{q \odot q^{\prime}\right\}$ is the imaginary part of the quaternion number $q_{1} \odot q_{1}^{\prime}+q_{2} \odot q_{2}^{\prime}+\cdots+q_{n} \odot$ q_{n}^{\prime} seen as an element of \mathbb{R}^{3}. Then $\mathcal{H}_{4 n+3}(\mathbb{H})$ is a simply connected 2-step nilpotent Lie group with the center $\mathcal{Z}\left(\mathcal{H}_{4 n+3}(\mathbb{H})\right)=\mathbb{R}^{3}$.

Let M be an infra-nilmanifold with $\mathcal{H}_{4 n+3}(\mathbb{H})$-geometry; that is, $M=\Pi \backslash \mathcal{H}_{4 n+3}(\mathbb{H})$, where $\Pi \subset \mathcal{H}_{4 n+3}(\mathbb{H}) \rtimes C$ is a torsion free, discrete subgroup with compact quotient, where C is a compact subgroup of $\operatorname{Aut}\left(\mathcal{H}_{4 n+3}(\mathbb{H})\right)$. Such a group Π is called an almost Bieberbach group (=AB-group). Since

$$
\Pi \cap \mathcal{Z}\left(\mathcal{H}_{4 n+3}(\mathbb{H})\right) \cong \mathbb{Z}^{3}
$$

is a lattice of $\mathcal{Z}\left(\mathcal{H}_{4 n+3}(\mathbb{H})\right), M$ fits

$$
T^{3} \rightarrow M \rightarrow N
$$

a Seifert 3 -torus "bundle" over a $4 n$-dimensional flat orbitfold. When there is no singular point, it is a genuine bundle over the base space N which is a flat Riemannian $4 n$-manifold.

In this paper, we shall study the automorphism group of $\mathcal{H}_{7}(\mathbb{H})=$ $\mathbb{R}^{3} \tilde{\times} \mathbb{H}$ and show that $\operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \cong \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rtimes O(J ; 2,2)$.

2. The Quaternionic Heisenberg Group

From now on, we shall use $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$ rather than $\mathbb{R}^{3} \tilde{\times} \mathbb{H}$. We identify $\mathbb{R}^{3} \tilde{\times} \mathbb{H}$ with $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$ by

$$
\left(s, q=x_{1}+i x_{2}+j x_{3}+k x_{4}\right) \longleftrightarrow\left(s, x=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{t}\right)
$$

Accordingly, we introduce a new notation for $\operatorname{Im}\left\{q \odot q^{\prime}\right\}$. For

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

define
$\mathcal{I}(x, y)$
$=\left(\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right|-\left|\begin{array}{ll}x_{3} & y_{3} \\ x_{4} & y_{4}\end{array}\right|,-\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{3} & y_{3}\end{array}\right|-\left|\begin{array}{ll}x_{4} & y_{4} \\ x_{2} & y_{2}\end{array}\right|,-\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{4} & y_{4}\end{array}\right|-\left|\begin{array}{ll}x_{2} & y_{2} \\ x_{3} & y_{3}\end{array}\right|\right)^{t}$
$=\left(x^{t} J_{1} y, x^{t} J_{2} y, x^{t} J_{3} y\right)^{t}$,
where ()t denotes the transpose of a matrix, and

$$
\begin{array}{ll}
J_{1} & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad J_{2}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \\
J_{3} & =\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
\end{array}
$$

Clearly $\mathcal{I}(x, y)=-\mathcal{I}(y, x)$ and $\mathcal{I}(x, y)$ corresponds to $\operatorname{Im}\left\{q \odot q^{\prime}\right\}$. Thus the group operation in $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$ becomes

$$
(s, x)(t, y)=(s+t+2 \mathcal{I}(x, y), x+y)
$$

Since $\mathcal{I}(x, \pm x)=0$, we see easily that

$$
(s, x)^{-1}=(-s,-x) .
$$

Thus we have

$$
[(s, x),(t, y)]=(s, x)^{-1}(t, y)^{-1}(s, x)(t, y)=(4 \mathcal{I}(x, y), 0)
$$

Therefore the center of $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}, \mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$ is \mathbb{R}^{3}. Thus we have shown the following lemma.

Lemma 2.1. $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$ is a simply connected 2-step nilpotent Lie group with the center $\mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)=\mathbb{R}^{3}$.

Let

$$
\sigma=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
K_{i}=\sigma^{-1} J_{i} \sigma, i=1,2,3
$$

Then J_{1}, J_{2}, J_{3} together with K_{1}, K_{2}, K_{3} form a linear basis for the vector space $\mathfrak{s o}(4)$ of the skew-symmetric matrices. Therefore,

$$
\mathfrak{s o}(4)=<J_{1}, J_{2}, J_{3}>\oplus<K_{1}, K_{2}, K_{3}>
$$

as vector spaces. Notice that each subspace fail to be a Lie subalgebra.
In order to understand the automorphism group of $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$, we need to study more general setting: For any $C \in \operatorname{GL}(4, \mathbb{R})$ and $V \in \mathfrak{s o}(4)$,

$$
J_{C}(V)=C^{t} V C
$$

defines a linear isomorphism $J_{C}: \mathfrak{s o}(4) \rightarrow \mathfrak{s o}(4)$. In fact, with respect to the basis $\left\{J_{1}, J_{2}, J_{3}, K_{1}, K_{2}, K_{3}\right\}$, it turns out that $\operatorname{det}\left(J_{C}\right)=$ $(\operatorname{det}(C))^{3}$.

Define

$$
O(J ; 2,2)=\left\{C \in \mathrm{GL}(4, \mathbb{R}) \mid C^{t} J_{i} C \in<J_{1}, J_{2}, J_{3}>\right\}
$$

That is, $C \in O(J ; 2,2)$ if and only if the map J_{C} leaves the subspace spanned by J_{1}, J_{2}, J_{3} invariant. Therefore,

$$
C^{t} J_{i} C=\lambda_{i 1} J_{1}+\lambda_{i 2} J_{2}+\lambda_{i 3} J_{3}, \quad \lambda_{i j} \in \mathbb{R},
$$

for $i=1,2,3$. It turns out then, the matrix $\lambda=\left(\lambda_{i j}\right)$ is non-singular.
Now we form the column vector

$$
J=\left[\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right]
$$

with entries the matrices J_{1}, J_{2}, J_{3}. With some abuse of notation, we can write

$$
O(J ; 2,2)=\left\{C \in \mathrm{GL}(4, \mathbb{R}) \mid C^{t} J C=\lambda J, \lambda \in \mathrm{GL}(3, \mathbb{R})\right\}
$$

Clearly $C \in O(J ; 2,2)$ is a closed subgroup of $\operatorname{GL}(4, \mathbb{R})$. For $C \in$ $O(J ; 2,2)$, let $\widehat{C} \in \mathrm{GL}(3, \mathbb{R})$ denote the nonsingular 3×3 matrix λ which satisfies $C^{t} J C=\lambda J$. So,

$$
C^{t} J C=\widehat{C} J .
$$

Then a map $C \rightarrow \widehat{C}$ defines a homomorphism ${ }^{\wedge}: O(J ; 2,2) \rightarrow$ $\mathrm{GL}(3, \mathbb{R})$.

Note that as a map $J_{C}: \mathfrak{s o}(4) \rightarrow \mathfrak{s o}(4)$, with respect to the ordered basis $\left\{J_{1}, J_{2}, J_{3}, K_{1}, K_{2}, K_{3}\right\}, J_{C}$ is of the form

$$
J_{C}=\left[\begin{array}{cc}
\widehat{C} & 0 \\
0 & *
\end{array}\right] .
$$

Since the center, $\mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)=\mathbb{R}^{3}$, is a characteristic subgroup of $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$, every automorphism of $\mathbb{R}^{3} \tilde{x} \mathbb{R}^{4}$ restricts to an automorphism of \mathbb{R}^{3}. Consequently an automorphism of $\mathbb{R}^{3} \tilde{x} \mathbb{R}^{4}$ induces an automorphism on the quotient group \mathbb{R}^{4}. Thus there is a natural homomorphism $\operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \rightarrow \operatorname{Aut}\left(\mathbb{R}^{3}\right) \times \operatorname{Aut}\left(\mathbb{R}^{4}\right)$ defined by $\theta \mapsto(\hat{\theta}, \bar{\theta})$.

Lemma 2.2. $\operatorname{Im}\left\{\operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \rightarrow \operatorname{Aut}\left(\mathbb{R}^{4}\right)\right\}=O(J ; 2,2)$. Moreover, the exact sequence $\operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \rightarrow O(J ; 2,2) \rightarrow 1$ splits.

Proof. Let $\theta \in \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$. Then

$$
(\hat{\theta}, \bar{\theta}) \in \operatorname{Aut}\left(\mathbb{R}^{3}\right) \times \operatorname{Aut}\left(\mathbb{R}^{4}\right)
$$

Since $[(s, x),(t, y)]=(4 \mathcal{I}(x, y), 0)$,

$$
\begin{aligned}
\theta[(s, x),(t, y)] & =\theta(4 \mathcal{I}(x, y), 0)=(\hat{\theta}(4 \mathcal{I}(x, y)), \bar{\theta}(0)) \\
& =(4 \hat{\theta}(\mathcal{I}(x, y)), 0)
\end{aligned}
$$

and

$$
[\theta(s, x), \theta(t, y)]=[(*, \bar{\theta}(x)),(*, \bar{\theta}(y)]=(4 \mathcal{I}(\bar{\theta}(x), \bar{\theta}(y)), 0)
$$

yield

$$
\mathcal{I}(\bar{\theta}(x), \bar{\theta}(y))=\hat{\theta}(\mathcal{I}(x, y)),
$$

or, equivalently,

$$
\left(\bar{\theta}(x)^{t} J_{1} \bar{\theta}(y), \bar{\theta}(x)^{t} J_{2} \bar{\theta}(y), \bar{\theta}(x)^{t} J_{3} \bar{\theta}(y)\right)^{t}=\hat{\theta} \cdot\left(x^{t} J_{1} y, x^{t} J_{2} y, x^{t} J_{3} y\right)^{t}
$$

for all x, y. This happens if and only if $\bar{\theta}^{t} J \bar{\theta}=\hat{\theta} J$. Therefore, $\bar{\theta} \in$ $O(J ; 2,2)$.

Conversely, suppose that $\bar{\theta} \in O(J ; 2,2)$, i.e., $\bar{\theta}^{t} J \bar{\theta}=\lambda J$ is satisfied for some $\lambda \in \mathrm{GL}(3, \mathbb{R})$. We define $\theta: \mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4} \rightarrow \mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$ by

$$
\theta(s, x)=(\lambda \cdot s, \bar{\theta}(x))
$$

Then

$$
\begin{aligned}
\theta((s, x) \cdot(t, y)) & =\theta(s+t+2 \mathcal{I}(x, y), x+y) \\
& =(\lambda \cdot(s+t+2 \mathcal{I}(x, y)), \bar{\theta}(x+y)) \\
& =(\lambda \cdot s+\lambda \cdot t+\lambda \cdot 2 \mathcal{I}(x, y), \bar{\theta}(x+y)), \\
\theta(s, x) \cdot \theta(t, y) & =(\lambda \cdot s, \bar{\theta}(x)) \cdot(\lambda \cdot t, \bar{\theta}(y)) \\
& =(\lambda \cdot s+\lambda \cdot t+2 \mathcal{I}(\bar{\theta}(x), \bar{\theta}(y)), \bar{\theta}(x)+\bar{\theta}(y)) .
\end{aligned}
$$

Now the condition $\bar{\theta}^{t} J \bar{\theta}=\lambda J$ guarantees that

$$
\lambda \cdot \mathcal{I}(x, y)=\mathcal{I}(\bar{\theta}(x), \bar{\theta}(y))
$$

Thus θ is an automorphism of $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$. Moreover, this defines a split homomorphism $O(J ; 2,2) \rightarrow \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$.

Proposition 2.3. (Structure of Aut $\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$)

$$
\operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \cong \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rtimes O(J ; 2,2)
$$

where an element $(\eta, A) \in \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rtimes O(J ; 2,2)$ acts by

$$
(\eta, A)(s, x)=(\hat{A} s+\eta(x), A x)
$$

Proof. Let $\theta \in \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$. Then we have the following commutative diagram of exact sequences

Thus

$$
\theta(s, x)=(\hat{\theta}(s)+\eta(s, x), \bar{\theta}(x))
$$

for $(s, x) \in \mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$, where $\eta: \mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$. Since θ is a homomorphism, one can show that η is a homomorphism, i.e.,

$$
\eta((s, x)(t, y))=\eta(s, x)+\eta(t, y) .
$$

In particular, set $x=0$.

$$
(\hat{\theta}(s), 0)=\theta(s, 0)=(\hat{\theta}(s)+\eta(s, 0), 0)
$$

implies that $\eta(s, 0)=0$ for all $s \in \mathbb{R}^{3}$, and thus

$$
\eta(s, x)=\eta((s, 0)(0, x))=\eta(s, 0)+\eta(0, x)=\eta(0, x) .
$$

Hence $\eta \in \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right)$.
Let us find out the kernel of the surjective homomorphism of Lemma 2.2:

$$
\operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \rightarrow O(J ; 2,2), \quad \theta \mapsto \bar{\theta}
$$

Suppose that $\theta \in \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$ with $\bar{\theta}=\operatorname{id}_{\mathbb{R}^{4}}$. Then $\hat{\theta}=\mathrm{id}_{\mathbb{R}^{3}}$ and thus

$$
\theta(s, x)=(s+\eta(x), x)
$$

for some $\eta \in \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right)$.
Conversely given $\eta \in \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right)$, define $\theta \in \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$ by $\theta(s, x)=(s+\eta(x), x)$. Clearly this θ lies in the kernel of the homomorphism. Hence we have a short exact sequence

$$
1 \rightarrow \operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rightarrow \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \rightarrow O(J ; 2,2) \rightarrow 1
$$

By Lemma 2.2, this sequence splits.
Note that $\operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rtimes O(J ; 2,2)$ is sitting inside

$$
\operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rtimes(\mathrm{GL}(3, \mathbb{R}) \times O(J ; 2,2))
$$

as $(\eta,(\hat{A}, A))$, and the action of $O(J ; 2,2)$ on $\operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right)$ is

$$
{ }^{A} \eta(x)=\hat{A} \cdot \eta\left(A^{-1} x\right)
$$

The group operation on $\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \rtimes O(J ; 2,2)$ is given by

$$
\begin{aligned}
& ((s, x), A)((t, y), B)=\left((s, x) \cdot{ }^{A}(t, y), A B\right) \\
& =((s, x) \cdot(\hat{A} t, A y), A B) \\
& =((s+\hat{A} t+2 \mathcal{I}(x, A y), x+A y), A B) .
\end{aligned}
$$

3. Application

Let $\Pi \subset \mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4} \rtimes \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$ be an AB-group. Then it is well known that $\Gamma=\Pi \cap\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$, the pure translations in Π, is the maximal normal nilpotent subgroup, and $\Phi=\Pi / \Gamma$, the holonomy group of Π, is finite. Since Γ is a lattice of $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}, \Gamma \cap \mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$ is a lattice of $\mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)=\mathbb{R}^{3}$, and $\Gamma / \Gamma \cap \mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)$ is a lattice of $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4} / \mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)=\mathbb{R}^{4}$. Thus

$$
\Gamma \cap \mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \cong \mathbb{Z}^{3}
$$

and

$$
\Gamma / \Gamma \cap \mathcal{Z}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right) \cong \mathbb{Z}^{4}
$$

Consider the following natural commutative diagram:

Recall from Proposition 2.3 that an element

$$
(\eta, A) \in \operatorname{Aut}\left(\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}\right)=\operatorname{Hom}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right) \rtimes O(J ; 2,2)
$$

acts on $(s, x) \in \mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$ by

$$
(\eta, A)(s, x)=(\hat{A} s+\eta(x), A x)
$$

Thus $O(J ; 2,2)$ acts on \mathbb{R}^{3} via the homomorphism

$$
\uparrow: O(J ; 2,2) \rightarrow \operatorname{GL}(3, \mathbb{R})
$$

and $O(J ; 2,2)$ acts on \mathbb{R}^{4} by matrix multiplication $O(J ; 2,2) \times \mathbb{R}^{4} \rightarrow$ \mathbb{R}^{4}.

Let $Q=\Pi / \mathbb{Z}^{3}$. Then the above diagram induces the following
commutative diagram:

Here $\Phi \subset O(J ; 2,2)$ acts on \mathbb{Z}^{4} by matrix multiplication, and on \mathbb{Z}^{3} via the homomorphism ${ }^{\wedge}: O(J ; 2,2) \rightarrow \mathrm{GL}(3, \mathbb{R})$.

Recall from [6, Proposition 2] that a virtually free abelian group

$$
1 \rightarrow \mathbb{Z}^{4} \rightarrow Q \rightarrow \Phi \rightarrow 1
$$

is a crystallographic group if and only if the centralizer of \mathbb{Z}^{4} in Q has no torsion elements. Since Φ acts effectively on \mathbb{Z}^{4}, it follows that Q is naturally a 4 -dimensional crystallographic group.

Let Π be an AB-group for $\mathbb{R}^{3} \tilde{\times} \mathbb{R}^{4}$. Then Π is a torsion free extension of \mathbb{Z}^{3} by a 4-dimensional crystallographic group Q so that

$$
1 \rightarrow \mathbb{Z}^{3} \rightarrow \Pi \rightarrow Q \rightarrow 1
$$

is exact.
Construction from Q. For each 4-dimensional crystallographic group Q, we shall check if there exists a construction from Q; that is, a torsion free $\Pi \subset \mathcal{H}_{7}(\mathbb{H}) \rtimes \operatorname{Aut}\left(\mathcal{H}_{7}(\mathbb{H})\right)$ fitting the short exact sequence

$$
1 \rightarrow \mathbb{Z}^{3} \rightarrow \Pi \rightarrow Q \rightarrow 1
$$

This is the key notion for our arguments and construction. We have a complete classification of 4-dimensional crystallographic groups (Q 's in the above statement). There are 4783 4-dimensional crystallographic groups up to isomorphism. We shall use the presentations of the 4-dimensional crystallographic groups given in the book [1]:
H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Spaces, John Wiley Sons, New York, 1978.

The crystallographic groups will be called Q, and every Q has an explicit representation $Q \rightarrow \mathbb{R}^{4} \rtimes \mathrm{GL}(4, \mathbb{Z})$ in this book.

References

1. H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Spaces, John Wiley \& Sons Inc., New York, 1978.
2. L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, Universitext, 1986.
3. Ku Young Ha, Jong Bum Lee and Kyung Bai Lee, Maximal holonomy of in-fra-nilmanifolds with 2-dimensional quaternionic Heisenberg geometry, Trans. Amer. Math. Soc. (to appear).
4. S. Hersonsky and F. Paulin, On the volumes of complex hyperbolic manifolds, Duke Math. J. 84 (1996), 719-737.
5. I. Kim and J. R. Parker, Geometry of quaternionic hyperbolic manifolds, Math. Proc. Cambridge Philos. Soc. (to appear).
6. K. B. Lee and F. Raymond, Topological, affine and isometric actions on flat Riemannian manifolds, J. Differential Geom. 16 (1981), 255-269.
7. K. B. Lee and A. Szczepzński, Maximal holonomy of almost Bieberbach groups for Heis5, Geom. Dedicata 87 (2001), 167-180.
8. J. Wolf, Spaces of Constant Curvature, 5th ed., Publish or Perish, Wilmington, 1984.

*

Department of Mathematics

Chungnam National University
Daejeon 305-764, Korea
E-mail: jkshin@math.chungnam.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea

