References
- V. K. Belosapka, A uniqueness theorem for automorphisms of a non-degenerate surface in the complex space (in Russian), Mat. Zametki 47 (1990), no. 3, 17–22. https://doi.org/10.1007/BF01138501
- S. S. Chern and J. Moser, Real Hypersurfaces in Complex Manifolds, Acta Math. 133 (1974), 219–271. https://doi.org/10.1007/BF02392146
- A. Cap and H. Schichl, Parabolic Geometries and Canonical Cartan Connections, Hokkaido Math. J. 29 (2000), no. 3, 453–505.
- A. Cap and G. Schmalz, Partially integrable almost CR manifolds of CR dimension and codimension two in “Lie Groups, Geometric Structures and Differential Equations–One Hundred Years After Sophus Lie” T.Morimoto, H. Sato, and K. Yamaguchi (eds.) Adv. Stud. in Pure Math., vol. 37, 2002
-
V. V. Ezhov and G. Schmalz, Normal forms and two-dimensional chains of an elliptic CR surface in
$\mathbb{C}^4$ , J. Geom. Anal. 6 (1996), no. 4, 495–529. https://doi.org/10.1007/BF02921621 - A. V. Loboda, On local automorphisms of real analytic hypersurfaces (in Russian), Izv. Akad. Nauk SSSR (Ser. Mat.) 45 (1981), no. 3, 620–645. https://doi.org/10.1070/IM1982v018n03ABEH001398
-
A. V. Loboda, Generic real analytic manifolds of codimension 2 in
$\mathbb{C}^4$ and their biholo-morphic mappings, Izv. Akad. Nauk SSSR (Ser. Mat.) 52, no. 5, 970–990; Engl. transl. in Math. USSR Izv. 33 (1989), no.2, 295–315. -
G. Schmalz, Über die Automorphismen einer streng pseudokonvexen CR-Manningfaltigkeit der Kodimension 2 im
$\mathbb{C}^4$ , Math. Nachr. 196 (1998), 189–229. https://doi.org/10.1002/mana.19981960109 -
G. Schmalz, Remarks on CR-manifolds of Codimension 2 in
$\mathbb{C}^4$ , Proceeding Winter School Geometry and Physics, Srni 1998, Supp. Rend. Circ. Matem. Palermo, Ser. II 59 (1999), 171–180 - G. Schmalz and J. Slovak, The Geometry of Hyperbolic and Elliptic CR manifolds of codimension two, Asian J. Math. 4 (2000), no. 3, 565–598.
- G. Schmalz and A. Spiro, Explicit construction of a Chern-Moser connection for CR manifolds of codimension two, preprint (2002)
- J. Slovak, Parabolic geometries, part of the DrSc Dissertation, preprint IGA 11/97
-
A. Spiro, Smooth real hypersurfaces in
$C^n$ with non compact isotropy groups of CR transformations, Geom. Dedicata 67 (1997), 199–221. https://doi.org/10.1023/A:1004996002100 - N. Tanaka, On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979), 131-190.
- A. G. Vitushkin, Holomorphic Mappings and the Geometry of Hypersurfaces, in Encyclopaedia of Mathematical Sciences vol. 7 (Several Complex Variables I), VINITI-Springer-Verlag, (1985-1990)
Cited by
- The Equivalence Problem for Five-dimensional Levi Degenerate CR Manifolds vol.2014, pp.20, 2014, https://doi.org/10.1093/imrn/rnt129