DOI QR코드

DOI QR Code

NORMAL SYSTEMS OF COORDINATES ON MANIFOLDS OF CHERN-MOSER TYPE

  • Schmalz, Gerd (Mathematisches Institut Rheinische Friederich-Wilhelms-Universitat) ;
  • Spiro, Andrea (Dipartimento di Matematica e Informatica Universita di Camerino)
  • Published : 2003.05.06

Abstract

It is known that the CR geometries of Levi non-degen-erate hypersurfaces in $\C^n$ and of the elliptic or hyperbolic CR submanifolds of codimension two in $\C^4$ share many common features. In this paper, a special class of normalized coordinates is introduced for any CR manifold M which is one of the above three kinds and it is shown that the explicit expression in these coordinates of an isotropy automorphism $f{\in}Aut(M)_o {\subset}Aut(M),\;o{\in}M$, is equal to the expression of a corresponding element of the automorphism group of the homogeneous model. As an application of this property, an extension theorem for CR maps is obtained.

Keywords

References

  1. V. K. Belosapka, A uniqueness theorem for automorphisms of a non-degenerate surface in the complex space (in Russian), Mat. Zametki 47 (1990), no. 3, 17–22. https://doi.org/10.1007/BF01138501
  2. S. S. Chern and J. Moser, Real Hypersurfaces in Complex Manifolds, Acta Math. 133 (1974), 219–271. https://doi.org/10.1007/BF02392146
  3. A. Cap and H. Schichl, Parabolic Geometries and Canonical Cartan Connections, Hokkaido Math. J. 29 (2000), no. 3, 453–505.
  4. A. Cap and G. Schmalz, Partially integrable almost CR manifolds of CR dimension and codimension two in “Lie Groups, Geometric Structures and Differential Equations–One Hundred Years After Sophus Lie” T.Morimoto, H. Sato, and K. Yamaguchi (eds.) Adv. Stud. in Pure Math., vol. 37, 2002
  5. V. V. Ezhov and G. Schmalz, Normal forms and two-dimensional chains of an elliptic CR surface in $\mathbb{C}^4$, J. Geom. Anal. 6 (1996), no. 4, 495–529. https://doi.org/10.1007/BF02921621
  6. A. V. Loboda, On local automorphisms of real analytic hypersurfaces (in Russian), Izv. Akad. Nauk SSSR (Ser. Mat.) 45 (1981), no. 3, 620–645. https://doi.org/10.1070/IM1982v018n03ABEH001398
  7. A. V. Loboda, Generic real analytic manifolds of codimension 2 in $\mathbb{C}^4$ and their biholo-morphic mappings, Izv. Akad. Nauk SSSR (Ser. Mat.) 52, no. 5, 970–990; Engl. transl. in Math. USSR Izv. 33 (1989), no.2, 295–315.
  8. G. Schmalz, Über die Automorphismen einer streng pseudokonvexen CR-Manningfaltigkeit der Kodimension 2 im $\mathbb{C}^4$, Math. Nachr. 196 (1998), 189–229. https://doi.org/10.1002/mana.19981960109
  9. G. Schmalz, Remarks on CR-manifolds of Codimension 2 in $\mathbb{C}^4$, Proceeding Winter School Geometry and Physics, Srni 1998, Supp. Rend. Circ. Matem. Palermo, Ser. II 59 (1999), 171–180
  10. G. Schmalz and J. Slovak, The Geometry of Hyperbolic and Elliptic CR manifolds of codimension two, Asian J. Math. 4 (2000), no. 3, 565–598.
  11. G. Schmalz and A. Spiro, Explicit construction of a Chern-Moser connection for CR manifolds of codimension two, preprint (2002)
  12. J. Slovak, Parabolic geometries, part of the DrSc Dissertation, preprint IGA 11/97
  13. A. Spiro, Smooth real hypersurfaces in $C^n$ with non compact isotropy groups of CR transformations, Geom. Dedicata 67 (1997), 199–221. https://doi.org/10.1023/A:1004996002100
  14. N. Tanaka, On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979), 131-190.
  15. A. G. Vitushkin, Holomorphic Mappings and the Geometry of Hypersurfaces, in Encyclopaedia of Mathematical Sciences vol. 7 (Several Complex Variables I), VINITI-Springer-Verlag, (1985-1990)

Cited by

  1. The Equivalence Problem for Five-dimensional Levi Degenerate CR Manifolds vol.2014, pp.20, 2014, https://doi.org/10.1093/imrn/rnt129