• Title/Summary/Keyword: techno-functional

Search Result 260, Processing Time 0.026 seconds

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

Role of network geometry on fluid displacement in microfluidic color-changing windows

  • Ucar, Ahmet Burak;Velev, Orlin D.;Koo, Hyung-Jun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.865-884
    • /
    • 2016
  • We have previously demonstrated a microfluidic elastomer, which changes apparent color and could have potential applications in smart windows. The practical use of such functional microfluidic systems requires rapid and uniform fluid displacement throughout the channel network with minimal amount of liquid supply. The goal of this simulation study is to design various microfluidic networks for similar applications including, but not limited to, the color-switching windows and compare the liquid displacement speed and efficiency of the designs. We numerically simulate and analyze the liquid displacement in the microfluidic networks with serpentine, parallel and lattice channel configurations, as well as their modified versions with wide or tapered distributor and collector channels. The data are analyzed on the basis of numerical criteria defined to evaluate the performance of the corresponding functional systems. We found that the lattice channel network geometry with the tapered distributors and collectors provides most rapid and uniform fluid displacement with minimum liquid waste. The simulation results could give an important guideline for efficient liquid supply/displacement in emerging functional systems with embedded microfluidic networks.

Recent progress in the synthesis of luminescent copper clusters

  • Zhou, Shaochen;Wang, Fu;Wang, Chuanyi
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.113-128
    • /
    • 2016
  • Luminescent metallic clusters have attracted great interest due to their unique optical, electronic and chemical features. Comparing with intensively studied Au and Ag Clusters, Cu clusters are superior in the aspects of cost and wide industrial demanding. However, tiny copper clusters are extremely prone to aggregate and undergo susceptibility of oxidation, thereby the synthesis of fluorescent zero valent copper clusters is rather challenging. In this review, synthetic strategies towards luminescent copper clusters, including macromolecule-protection and micro molecule-capping, have been systematically surveyed. Both "bottom-up" and "top-down" synthetic routes are found to be effective in fabricating luminescent copper clusters, some of which are quite stable and possess decent luminescence quantum yields. In general, the synthesis of fluorescent copper clusters remains at its infant stage. A great deal of effort on developing novel and economic synthetic routes to produce bright and stable copper clusters is highly expected in future.

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.397-405
    • /
    • 2022
  • The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.

Free vibration analysis of pores functionally graded plates using new element based on Hellinger-Reissner functional

  • Majid Yaghoobi;Mohsen Sedaghatjo;Mohammad Karkon;Lazreg Hadji
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.713-728
    • /
    • 2023
  • This paper aims to investigate the free vibration analysis of FG plates, taking into account the effects of even and uneven porosity. The study employs the Hellinger-Reisner functional and obtains the element's bending stress and membrane stress fields from the analytical solution of the governing equations of the thick plate and plane problem, respectively. The displacement field serves as the second independent field. While few articles on free vibration analysis of circular plates exist, this paper investigates the free vibration of both rectangular and circular plates. After validating the proposed element, the paper investigates the effects of porosity distributions on the natural frequency of the FG porous plate. The study calculates the natural frequency of thin and thick bending plates with different aspect ratios and support conditions for various porosity and volume fraction index values. The study uses three types of porosity distributions, X, V, and O, for the uneven porosity distribution case. For O and V porosity distribution modes, porosity has a minor effect on the natural frequency for both circular and rectangular plates. However, in the case of even porosity distribution or X porosity distribution, the effect of porosity on the natural frequency of circular and rectangular plates increases with an increase in the volume fraction index.

Comparative Analysis of International and Domestic Safety Assessment Criteria for the Powered-Scooter and the Electric-Wheelchair (전동휠체어 및 의료용스쿠터의 국내·외 안전성 평가기준 비교 분석 연구)

  • Jun, Sung Chul;Seo, Jeong Hee;Lim, Hee Chul;Lee, Chang Hyung;Shin, Young Il;Jung, Duk Young
    • 재활복지
    • /
    • v.16 no.3
    • /
    • pp.421-437
    • /
    • 2012
  • The goal of this study is to provide the basic information for improvement of domestic standards on the powered scooter and the electric wheelchair considering using environments in the nation. The international standards and domestic standards have been analyzed and compared, in order to propose improved domestic standards. Based on the research, the items and standards for general and functional recommendations, electric features, and other suggestions have been reexamined so that the improvements on test item and standards have been identified, corrected, and summarized including max. speed, brake system, lights and so on. We have been preparing the reference data for the improvement of standards on the powered scooter and the electric wheelchair through the comparison & analysis on the international and domestic standards.

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran;Wu, Liang;Hossain, Md. Masem;Pan, Jiefeng;Ran, Jin;Mondal, Abhishek N.;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.365-378
    • /
    • 2015
  • Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

Amphiphilic graft copolymers: Effect of graft chain length and content on colloid gel

  • Nitta, Kyohei;Kimoto, Atsushi;Watanabe, Junji;Ikeda, Yoshiyuki
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • A series of amphiphilic graft copolymers were synthesized by varying the number of graft chains and graft chain lengths. The polarity of the hydrophobic graft chain on the copolymers was varied their solution properties. The glass transition temperature of the copolymers was in the low-temperature region, because of the amorphous nature of poly (trimethylene carbonate) (PTMC). The surface morphology of the lyophilized colloid gel had a bundle structure, which was derived from the combination of poly(N-hydroxyethylacrylamide)( poly(HEAA)) and PTMC. The solution properties were evaluated using dynamic light scattering and fluorescence measurements. The particle size of the graft copolymers was about 30-300 nm. The graft copolymers with a higher number of repeating units attributed to the TMC (trimethylene carbonate) component and with a lower macromonomer ratio showed high thermal stability. The critical association concentration was estimated to be between $2.2{\times}10^{-3}$ and $8.9{\times}10^{-2}mg/mL$, using the pyrene-based fluorescence probe technique. These results showed that the hydrophobic chain of the graft copolymer having a long PTMC segment had a low polarity, dependent on the number of repeating units of TMC and the macromonomer composition ratio. These results demonstrated that a higher number of repeating units of TMC, with a lower macromonomer composition, was preferable for molecular encapsulation.