DOI QR코드

DOI QR Code

Free vibration analysis of pores functionally graded plates using new element based on Hellinger-Reissner functional

  • Majid Yaghoobi (Civil Engineering and Architecture Department, Engineering Faculty, University of Torbat Heydarieh) ;
  • Mohsen Sedaghatjo (Civil Engineering and Architecture Department, Engineering Faculty, University of Torbat Heydarieh) ;
  • Mohammad Karkon (Civil Engineering Department, Larestan Branch Islamic Azad University) ;
  • Lazreg Hadji (Civil Engineering Department, Faculty of Applied Sciences, University of Tiaret)
  • Received : 2022.10.02
  • Accepted : 2023.11.02
  • Published : 2023.12.25

Abstract

This paper aims to investigate the free vibration analysis of FG plates, taking into account the effects of even and uneven porosity. The study employs the Hellinger-Reisner functional and obtains the element's bending stress and membrane stress fields from the analytical solution of the governing equations of the thick plate and plane problem, respectively. The displacement field serves as the second independent field. While few articles on free vibration analysis of circular plates exist, this paper investigates the free vibration of both rectangular and circular plates. After validating the proposed element, the paper investigates the effects of porosity distributions on the natural frequency of the FG porous plate. The study calculates the natural frequency of thin and thick bending plates with different aspect ratios and support conditions for various porosity and volume fraction index values. The study uses three types of porosity distributions, X, V, and O, for the uneven porosity distribution case. For O and V porosity distribution modes, porosity has a minor effect on the natural frequency for both circular and rectangular plates. However, in the case of even porosity distribution or X porosity distribution, the effect of porosity on the natural frequency of circular and rectangular plates increases with an increase in the volume fraction index.

Keywords

Acknowledgement

This work has been financially supported by the University of Torbat Heydarieh. The grant number is UTH: 1401/04/18142.

References

  1. Adhikari, B. and Singh, B. (2019), "Dynamic response of functionally graded plates resting on two-parameter-based elastic foundation model using a quasi-3D theory", Mech. Based Des. Struct. Machines, 47(4), 399-429. https://doi.org/10.1080/15397734.2018.1555965.
  2. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2022), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 38(5), 4051-4072. https://doi.org/10.1007/s00366-021-01382-y.
  3. Askari, M., Brusa, E. and Delprete, C. (2022), "On wave propagation and free vibration of piezoelectric sandwich plates with perfect and porous functionally graded substrates", J. Intelligent Mater. Syst. Struct., 33(16), 2049-2073. https://doi.org/10.1177/1045389X211072195.
  4. Bot, I.K., Bousahla, A.A., Zemri, A., Sekkal, M., Kaci, A., Bourada, F., Tounsi, A., Ghazwani, M. and Mahmoud, S.R. (2022), "Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment", Steel Compos. Struct., 43(6), 821-837.
  5. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  6. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. http://dx.doi.org/10.12989/scs.2021.38.1.001.
  7. Ha, L.T. (2022), "Free vibration of a bi-directional imperfect functionally graded sandwich beams", Modern Mech. Appl., 100-111. https://doi.org/10.1007/978-981-16-3239-6_8
  8. Hadji, M., Bouhadra, A., Mamen, B., Menasria, A., Bousahla, A.A., Bourada, F., Bourada, M., Benrahou, K. H. and Tounsi, A. (2023), "Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures", Steel Compos. Struct., 46(1), 1.
  9. Herrera, I. (1984). Boundary Methods: An Algebraic Theory. Pitman Advanced Publishing Program.
  10. Hosseini, S., Rahimi, G. and Anani, Y. (2021), "A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT", Eng. Anal. Bound. Elements, 125, 168-177. https://doi.org/10.1016/j.enganabound.2020.12.016.
  11. Karkon, M. and Yaghoobi, M. (2022), "Mixed finite element formulation for 2D problems analysis based on analytical solutions of deferential equation", Amirkabir J. Mech. Eng., 54(6), 1443-1458.
  12. Katiyar, V., Gupta, A. and Tounsi, A. (2022), "Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D FGPs) with partial supports by using FEM", Steel Compos. Struct., 45(5), 621-640.
  13. Kumar, H.N. and Kattimani, S. (2022), "Effect of different geometrical non-uniformities on nonlinear vibration of porous functionally graded skew plates: a finite element study", Defence Technol., 18(6), 918-936. https://doi.org/10.1016/j.dt.2021.05.002.
  14. Kumar, R. and Khare, S. (2022), "Effect of uniform and nonuniform porosity on free vibration of functionally graded circular plate", Int. J. Comput. Mater. Sci. Eng., 11(03), 2250001. https://doi.org/10.1142/S2047684122500014.
  15. Kumar, V., Singh, S., Saran, V.H. and Harsha, S.P. (2021), "Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak's foundation", Europ. J. Mech.-A/Solids, 85, 104124. https://doi.org/10.1016/j.euromechsol.2020.104124.
  16. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 001.
  17. Merdaci, S., Adda, H. M., Hakima, B., Dimitri, R. and Tornabene, F. (2021), "Higher-order free vibration analysis of porous functionally graded plates", J. Compos. Sci., 5(11), 305. https://doi.org/10.3390/jcs5110305.
  18. Mesbah, A., Belabed, Z., Amara, K., Tounsi, A., Bousahla, A.A. and Bourada, F. (2023), "Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams", Struct. Eng. Mech., 86(3), 291.
  19. Petrolito, J. (1990), "Hybrid-trefftz quadrilateral elements for thick plate analysis", Comput. Meth. Appl. Mech. Eng., 78(3), 331-351. https://doi.org/10.1016/0045-7825(90)90005-7.
  20. Pham, Q.-H., Tran, T.T., Tran, V.K., Nguyen, P.-C., and Nguyen-Thoi, T. (2022), "Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element", Alexandria Eng. J., 61(3), 1788-1802. https://doi.org/10.1016/j.aej.2021.06.082.
  21. Rezaei, A., Saidi, A., Abrishamdari, M. and Mohammadi, M.P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach", Thin-Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.
  22. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. http://dx.doi.org/10.12989/scs.2020.35.5.659.
  23. Sharma, N., Tiwari, P., Maiti, D.K. and Maity, D. (2021), "Free vibration analysis of functionally graded porous plate using 3-D degenerated shell element", Compos. Part C: Open Access, 6, 100208. https://doi.org/10.1016/j.jcomc.2021.100208.
  24. Tounsi, A., Tahir, S., Al-Osta, M., Do-Van, T., Bourada, F., Bousahla, A. and Tounsi, A. (2023), "An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates", Comput. Concr, 32, 61-74.
  25. Van Vinh, P., Tounsi, A. and Belarbi, M.-O. (2023), "On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters", Eng. Comput., 39(1), 835-855. https://doi.org/10.1007/s00366-022-01687-6.
  26. Van Vinh, P., Van Chinh, N. and Tounsi, A. (2022), "Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM", Europ. J. Mech. - A/Solids, 96, 104743. https://doi.org/10.1016/j.euromechsol.2022.104743.
  27. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  28. Yaghoobi, M. and Koochi, A. (2021), "Electromagnetic instability analysis of functionally graded tapered nano-tweezers", Physica Scripta, 96(8), 085701. https://ui.adsabs.harvard.edu/link_gateway/2021PhyS...96h5701Y/doi:10.1088/1402-4896/abfe32.
  29. Yaghoobi, M., Sedaghatjo, M., Alizadeh, R. and Karkon, M. (2021), "Evaluating the effect of asymmetric cross-section in free vibration and bending analysis results of FG sandwich beam by proposing simple efficient element", Periodica Polytechnica Civil Eng., 65(2), 638-648. https://doi.org/10.3311/PPci.17447.
  30. Yaghoobi, M., Sedaghatjo, M., Alizadeh, R. and Karkon, M. (2023), "An efficient simple element for free vibration and buckling analysis of FG beam", J. Eng. Res., 11(1B).
  31. Zghal, S. and Dammak, F. (2021), "Vibration characteristics of plates and shells with functionally graded pores imperfections using an enhanced finite shell element", Comput. Mathem. Appl., 99, 52-72. https://doi.org/10.1016/j.camwa.2021.08.001.
  32. Zhou, C., Zhan, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.
  33. Zur, K.K. and Jankowski, P. (2019), "Multiparametric analytical solution for the eigenvalue problem of FGM porous circular plates", Symmetry, 11(3), 429. https://doi.org/10.3390/sym11030429.