DOI QR코드

DOI QR Code

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Received : 2013.03.28
  • Accepted : 2013.12.13
  • Published : 2014.04.25

Abstract

This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

Keywords

References

  1. Amestoy, P.R., Duff, I.S., Koster, J. and L'Excellent, J.Y. (2001), "A fully asynchronous multifrontal solver using distributed dynamic scheduling", SIAM J. Matrix Anal. A., 23(1), 15-41. https://doi.org/10.1137/S0895479899358194
  2. Amestoy, P.R., Guermouche, A., L'Excellent, J.Y. and Pralet, S. (2006), "Hybrid scheduling for the parallel solution of linear systems", Parallel Comput., 32(2), 136-156. https://doi.org/10.1016/j.parco.2005.07.004
  3. Berdichevsky, V. (1977), "On averaging of periodic systems", Prikl. Mat. Mekh., 41(6),993-1006.
  4. Berdichevsky, V. (1979), "Variational-asymptotic method of constructing a theory of shells", Prikl. Mat. Mekh., 43(4), 664-687.
  5. Chevallier, G., Ghorbel, S. and Benjeddou, A. (2008), "A benchmark for free vibration and effective coupling of thick piezoelectric smart structures", Smart Mater. Struct., 17(6), 065007(11pp). https://doi.org/10.1088/0964-1726/17/6/065007
  6. Chevallier, G., Ghorbel, S. and Benjeddou, A. (2009), "Piezoceramic shunted damping concept: testing, modelling and correlation", Mecaniqueet Industries, 10(5), 397-411. https://doi.org/10.1051/meca/2009073
  7. Dai, Q. and Ng, K. (2012), "Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modeling", Mech. Mater., 53, 29- 46. https://doi.org/10.1016/j.mechmat.2012.04.014
  8. Eshelby, J. (1957), "The determination of the elastic field of an ellipsoidal inclusion and related problems", Proc. Roy. Soc. A, 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
  9. Gibson, R.F. (2010), "A review of recent research on mechanics of multifunctional composite materials and structures", Compos. Struct., 92(12), 2793- 2810. https://doi.org/10.1016/j.compstruct.2010.05.003
  10. Koutsawa, Y., Belouettar, S., Makradi, A. and Tiem, S. (2012), "X-FEM implementation of VAMUCH: application to active structural fiber multi-functional composite materials", Compos. Struct., 94(4), 1297 -1304. https://doi.org/10.1016/j.compstruct.2011.10.028
  11. Koutsawa, Y., Biscani, F., Belouettar, S., Houssein, N. and Carrera, E. (2010), "Multi-coating in homogeneities approach for the effective thermo-electro-elastic properties of piezoelectric composite materials", Compos. Struct., 92(4), 964-972. https://doi.org/10.1016/j.compstruct.2009.09.041
  12. Lin, Y. and Sodano, H.A. (2008), "Concept and model of a piezoelectric structural fiber for multifunctionalcomposites", Compos. Sci. Technol., 68(7-8), 1911 - 1918. https://doi.org/10.1016/j.compscitech.2007.12.017
  13. Lin, Y. and Sodano, H.A. (2009), "Electromechanical characterization of a active structural fiber lamina for multifunctional composites", Compos. Sci. Technol., 69(11-12), 1825 -1830. Experimental Techniques and Design in Composite Materials (ETDCM8) with Regular Papers. https://doi.org/10.1016/j.compscitech.2009.03.022
  14. Qu, J. and Cherkaoui, M. (2006), .Fundamentals of micromechanics of solids, John Wiley & Sons, Inc., Hoboken, New Jersey.
  15. Renard, Y. and Pommier, J. (2011), GetFEM++: An open-source finite element library.
  16. Tang, T. and Yu, W. (2008), "Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials", Mech. Mater., 40(10), 812- 824. https://doi.org/10.1016/j.mechmat.2008.04.007
  17. Trindade, M. and Benjeddou, A. (2009), "Effective electromechanical coupling coefficients of piezoelectricadaptive structures: Critical evaluation and optimization", Mech. Adv. Mater. Struct., 16(3), 210-223. https://doi.org/10.1080/15376490902746863
  18. Yu, W. and Tang, T. (2007), "Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials", Int. J. Solids Struct., 44(11-12), 3738 -3755. https://doi.org/10.1016/j.ijsolstr.2006.10.020
  19. Yu, W., Williams, T.O., Bednarcyk, B.A., Aboudi, J. and Tang, T. (2007), "A critical evaluation of the predictive capabilities of various advanced micromechanics models", Proceedings of the48th Structures, Structural Dynamics, and Materials Conference, Waikiki, Hawaii, April 23-26.

Cited by

  1. SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic half-space vol.17, pp.2, 2016, https://doi.org/10.12989/sss.2016.17.2.327
  2. A micromechanics approach for effective elastic properties of nano-composites with energetic surfaces/interfaces vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.066
  3. A study on performance of distributed piezoelectric composite actuators using Galerkin method vol.28, pp.10, 2014, https://doi.org/10.1088/1361-665x/ab3f3d
  4. Investigation on Actuation Performance of Continuous Fiber Reinforced Piezoelectric Composite Actuator vol.36, pp.3, 2014, https://doi.org/10.1017/jmech.2019.42