Browse > Article
http://dx.doi.org/10.12989/mwt.2015.6.5.365

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method  

Khan, Muhammad Imran (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
Wu, Liang (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
Hossain, Md. Masem (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
Pan, Jiefeng (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
Ran, Jin (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
Mondal, Abhishek N. (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
Xu, Tongwen (Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China)
Publication Information
Membrane and Water Treatment / v.6, no.5, 2015 , pp. 365-378 More about this Journal
Abstract
Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).
Keywords
brominated poly(2,6-dimethyl 1,6-phenylene oxide); N,N-dimethylaniline; anion exchange membrane; phase-inversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Oh, S.J., Moon, S-H. and Davis, T. (2000), "Effects of metals ions on diffusion dialysis of inorganic acids", J. Membr. Sci., 169(1), 95-105.   DOI
2 Palaty, Z. and Zakova. A. (2006), "Competitive transport of hydrochloric acid and zinc chloride through polymeric anion-exchange membrane", J. Appl. Polym. Sci., 101(3), 1391-1397.   DOI
3 Palaty, Z. and Bendova, H. (2009), "Separation of HCl+$FeCl_2$ mixture by anion-exchange membrane", Sep. Sci. Technol., 66(1-7), 45-50.
4 Paddison, S.J., Pivovar, B.S. and Paul, R. (2002), "The nature of proton transport in fully hydrated Nafion", Phys. Chem. Chem. Phys., 4(7), 1158-1163.   DOI
5 Strathmann, H. (2004), Ion Exchange Membrane Separation Processes, Elesevier, Amsterdam, Netharland.
6 Stancheva, K.A. (2008), "Application of dialysis, oxide commun", 31, 758-775.
7 Sun, F.J., Wu, C.M., Wu, Y.H. and Xu, T.W. (2014), "Porous BPPO-based membranes modified by multisilicon copolymer for application in diffusion dialysis", J. Membr. Sci., 450, 103-110.   DOI
8 Wijmans, J.G. and Baker, R.W. (1995), "The solution-diffusion model: a review", J. Membr. Sci., 107(1-2), 1-21.   DOI   ScienceOn
9 Wu, Y.H., Wu, C.M., Xu, T.W., Lin, X.C. and Fu, Y.X. (2009), "Novel silica/poly(2,6-dimethyl-1,4-phenylene oxide) hybrid membranes for alkaline fuel cells: Effect of heat treatment", J. Membr. Sci., 338(1-2), 51-60.   DOI
10 Wu, C.M., Wu, Y.H., Luo, J.Y., Xu, T.W. and Fu, Y.X. (2010a), "Anion exchange hybrid membranes from PVA and multi-alkoxysilicon copolymer tailored for different dialysis process", J. Membr. Sci., 356(1-2), 96-104.   DOI
11 Wu, H.Q., Tang, B.B. and Wu, P.Y. (2010b), "Novel ultrafiltration membranes prepared from a multi-walled carbon nano tubes/polymer composite", J. Membr. Sci., 362(1-2), 374-383.   DOI
12 Wu, Y.H., Luo, J.Y., Wu, C.M., Xu, T.W. and Fu, Y.X. (2011), "Bionic multisilicon copolymers used as novel cross-linking agent for preparing anion exchange hybride membranes", J. Phys. Chem. B, 115(20), 6474-6483.   DOI
13 Wu, Y.H., Luo, J.Y., Zhao, L.L., Zhang, G.C., Wu, C.M. and Xu, T.W. (2013), "QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery", J. Membr. Sci., 428, 95-103.   DOI
14 Xu, T.W. (2002), "Electrodialysis processes with bipolar membranes (EDBM) in environment protection: a review", Resour. Conserv. Recy., 37(1), 1-22.   DOI   ScienceOn
15 Xu, T.W. (2005), "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263(1-2), 1-29.   DOI   ScienceOn
16 Xu, T.W. and Yang, W.H. (2001), "Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes static runs", J. Membr. Sci., 183(2), 193-200.   DOI
17 Xu, T.W. and Yang, W.H. (2004), "Turning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes-simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration", J. Hazard. Mater., 109(1-3), 157-164.   DOI
18 Xu, T.W., Wu, D. and Wu, L. (2008), "Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-a versatile starting polymer for proton conductive membranes (PCMs)", Prog. Polym. Sci., 33(9), 894-915.   DOI
19 Xu, J., Lu, S. and Fu, D. (2009), "Recovery of hydrochloric acid from waste acid solution by diffusion dialysis", J. Hazard. Mater., 165(1-3), 832-837.   DOI
20 Yan, J.L. and Hickner, M.A. (2010), "Anion exchange membranes by bromination of benzylmethylcontaining poly(sulfone)s", Macromolecules, 43(5), 2349-2356.   DOI
21 Zhang, S.L., Xu, T.W. and Wu, C.M. (2006), "Synthesis and characterizations of novel positively charged hybrid membranes from poly(2,6 dimethyl-1,4-phenylene oxide)", J. Membr. Sci., 269(1-2), 142-151.   DOI
22 Gao, L., Tang, B.B. and Wu, P.Y. (2009), "An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry-wet phase inversion", J. Membr. Sci., 326(1), 168-177.   DOI
23 Agrawal, A. and Sahu, K.K. (2009), "An overview of recovery of acid from spent acidic solutions from steel, from steel and electroplating industries", J. Hazards. Mater., 171(1-3), 61-75.   DOI   ScienceOn
24 Berezina, N.P., Kononenko, N.A., Dyomina, O.A. and Gnusin, N.P. (2008), "Characterization of ion-exchange membrane materials: properties vs. structure", Adv. Colloid Interf. Sci., 139(1-2), 3-28.   DOI
25 Elmidaoui, A., Molenat, J. and Gavach, C. (1991), "Competitive diffusion of hydrochloric acid and sodium chloride through an acid dialysis membrane", J. Membr. Sci., 55(1-2), 79-98.   DOI
26 Kang, M.-S., Yoo, K.-S. and Moon, S.-H. (2001), "Alumped parameter model to predict hydrochloric acid recovery in diffusion dialysis", J. Membr. Sci., 188(1), 61-70.   DOI
27 Kujawski, W. and Narebska, A. (1991), "Transport of electrolytes across charged membranes. Part IV. Frictional interations of the neutral and alkaline permeants and the permeability/reflection phenomena", J. Membr. Sci., 56(1), 99-112.   DOI
28 M.Y., Nagarale, R.K., Kittur, A.A. and Kulkarni, S.S. (2006), "Ion-exchange membranes preparative methods for electrodialysis and fuel cell applications", Desalination, 197(1-3), 225-246.   DOI   ScienceOn
29 Klaysom, C., Moon, S.H., Ladewig, B.P., Lu, G.Q.M. and Wang, L.Z. (2011), "Preparation of porous ion-exchange membranes (IEMs) and their characteristics", J. Membr. Sci., 371(1-2), 37-44.   DOI
30 Klaysom, C., Marschall, R., Moon, S.H., Ladewig, B.P., Max Lu, G.Q. and Wang, L.Z. (2011), "Preparation of porous composite ion-exchange membranes for desalination application", J. Mater. Chem., 21(20), 7401-7409.   DOI
31 Luo, J., Wu, C., Xu, T. and Wu, Y. (2011), "Diffusion dialysis-concept, principle and applications", J. Membr. Sci., 366(1-2), 1-6.   DOI
32 Luo, J.Y., Wu, C.M., Wu, Y.H. and Xu, T.W. (2010), "Diffusion dialysis of hydrochloric acid at different temperature using PPO-$SiO_2$ hybrid anion exchange membranes", J. Membr. Sci., 347(1-2), 240-249.   DOI
33 Narebska, A., Koter, S., Warszawski, A. and Le, T.T. (1995), "Irreversible thermodynamics of transport across charged membranes. Part VI. Frictional interactions and coupling effects in transport of acid through anion exchange membranes", J. Membr. Sci., 106(1-2), 39-48.   DOI
34 Negro, C., Blanco, M.A., Lopez-Mateos, F. and DeJong, A.M.C.P. (2001), "Free acids and chemicals recovery from stainless steel pickling baths", Sep. Sci. Technol., 36(7), 1543-1556.   DOI