DOI QR코드

DOI QR Code

Role of network geometry on fluid displacement in microfluidic color-changing windows

  • Ucar, Ahmet Burak (Department of Chemical and Biomolecular Engineering, North Carolina State University) ;
  • Velev, Orlin D. (Department of Chemical and Biomolecular Engineering, North Carolina State University) ;
  • Koo, Hyung-Jun (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • Received : 2015.12.30
  • Accepted : 2016.07.08
  • Published : 2016.11.25

Abstract

We have previously demonstrated a microfluidic elastomer, which changes apparent color and could have potential applications in smart windows. The practical use of such functional microfluidic systems requires rapid and uniform fluid displacement throughout the channel network with minimal amount of liquid supply. The goal of this simulation study is to design various microfluidic networks for similar applications including, but not limited to, the color-switching windows and compare the liquid displacement speed and efficiency of the designs. We numerically simulate and analyze the liquid displacement in the microfluidic networks with serpentine, parallel and lattice channel configurations, as well as their modified versions with wide or tapered distributor and collector channels. The data are analyzed on the basis of numerical criteria defined to evaluate the performance of the corresponding functional systems. We found that the lattice channel network geometry with the tapered distributors and collectors provides most rapid and uniform fluid displacement with minimum liquid waste. The simulation results could give an important guideline for efficient liquid supply/displacement in emerging functional systems with embedded microfluidic networks.

Keywords

Acknowledgement

Supported by : NSF Triangle MRSEC, NSF-ASSIST Nanosystems Engineering Research Center, NSF, National Research Foundation of Korea (NRF)

References

  1. Bejan, A. and Lorente, S. (2006), "Constructal theory of generation of configuration in nature and engineering", J. Appl. Phys., 100, 041301 1-27. https://doi.org/10.1063/1.2221896
  2. Chang, S.T., Ucar, A.B., Swindlehurst, G.R., Bradley IV, R.O., Renk, F.J. and Velev, O.D. (2009), "Materials of controlled shape and stiffness with photocurable microfluidic endoskeleton", Adv. Mater., 21, 2803-2807. https://doi.org/10.1002/adma.200803638
  3. Cho, K.H. and Kim, M.H. (2010), "Fluid flow characteristics of vascularized channel networks", Chem. Eng. Sci., 65, 6270-6281. https://doi.org/10.1016/j.ces.2010.09.020
  4. Commenge, J.M., Saber, M. and Falk, L. (2011), "Methodology for multi-scale design of isothermal laminar flow networks", Chem. Eng. J., 173, 541-551. https://doi.org/10.1016/j.cej.2011.07.060
  5. Domachuk, P., Tsioris, K., Omenetto, F.G. and Kaplan, D.L. (2010), "Bio-microfluidics: biomaterials and biomimetic designs", Adv. Mater., 22, 249-260. https://doi.org/10.1002/adma.200900821
  6. Gunther, A. and Jensen, K.F. (2006), "Multiphase microfluidics: from flow characteristics to chemical and materials synthesis", Lab Chip, 6, 1487-1503. https://doi.org/10.1039/B609851G
  7. Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S. and Schubert, U.S. (2010), "Self-healing materials", Adv. Mater., 22, 5424-5430. https://doi.org/10.1002/adma.201003036
  8. Hatton, B.D., Wheeldon, I., Hancock, M.J., Kolle, M., Aizenberg, J. and Ingber, D.E. (2013), "An artificial vasculature for adaptive thermal control of windows", Sol. Energ. Mat. Sol. C, 117, 429-436. https://doi.org/10.1016/j.solmat.2013.06.027
  9. Koo, H.J. and Velev, O.D. (2013a), "Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures", Biomicrofluidics, 7, 031501 1-10. https://doi.org/10.1063/1.4804249
  10. Koo, H.J. and Velev, O.D. (2013b), "Regenerable photovoltaic devices with a hydrogel-embedded microvascular network", Sci. Rep., 3, 2357 (1-6). https://doi.org/10.1038/srep02357
  11. Lee, J., Lorente, S., Bejan, A. and Kim, M. (2009), "Vascular structures with flow uniformity and small resistance", Int. J. Heat Mass Tran., 52, 1761-1768. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.027
  12. Liu, H., Li, P.W. and Van Lew, J. (2010), "CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels", Int. J. Hydrogen Energ., 35, 9186-9198. https://doi.org/10.1016/j.ijhydene.2010.06.043
  13. Mark, D., Haeberle, S., Roth, G., von Stetten, F. and Zengerle, R. (2010), "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications", Chem. Soc. Rev., 39, 1153-1182. https://doi.org/10.1039/b820557b
  14. Morin, S.A., Shepherd, R.F., Kwok, S.W., Stokes, A.A., Nemiroski, A. and Whitesides, G.M. (2012), "Camouflage and display for soft machines", Science, 337, 828-832. https://doi.org/10.1126/science.1222149
  15. Murphy, E.B. and Wudl, F. (2010), "The world of smart healable materials", Prog. Polym. Sci., 35, 223-251. https://doi.org/10.1016/j.progpolymsci.2009.10.006
  16. Olugebefola, S.C., Aragon, A.M., Hansen, C.J., Hamilton, A.R., Kozola, B.D., Wu, W., Geubelle, P.H., Lewis, J.A., Sottos, N.R. and White, S.R. (2010), "Polymer microvascular network composites", J. Compos. Mater., 44, 2587-2603. https://doi.org/10.1177/0021998310371537
  17. Reis, A.H. (2006), "Constructal theory: from engineering to physics, and how flow systems develop shape and structure", Appl. Mech. Rev., 59, 269-282. https://doi.org/10.1115/1.2204075
  18. Renault, C., Colin, S., Orieux, S., Cognet, P. and Tzedakis, T. (2012), "Optimal design of multi-channel microreactor for uniform residence time distribution", Microsyst. Technol., 18, 209-223. https://doi.org/10.1007/s00542-011-1334-7
  19. Russ, J.C. (2011), The Image Processing Handbook, sixth ed. Taylor & Francis Group., Boca Raton, FL, pp. 92-97.
  20. Saias, L., Autebert, J., Malaquin, L. and Viovy, J.L. (2011), "Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems", Lab Chip, 11, 822-832. https://doi.org/10.1039/c0lc00304b
  21. So, J.H., Thelen, J., Qusba, A., Hayes, G.J., Lazzi, G. and Dickey, M.D. (2009), "Reversibly deformable and mechanically tunable fluidic antennas", Adv. Funct. Mater., 19, 3632-3637. https://doi.org/10.1002/adfm.200900604
  22. Solovitz, S.A. and Mainka, J. (2011), "Manifold design for micro-channel cooling with uniform flow distribution", J. Fluid Eng - T. ASME, 133, 0511103 1-11.
  23. Stone, H.A., Stroock, A.D. and Ajdari, A. (2004), "Engineering flows in small devices: microfluidics toward a lab-on-a-chip", Annu. Rev. Fluid Mech., 36, 381-411. https://doi.org/10.1146/annurev.fluid.36.050802.122124
  24. Tondeur, D., Fan, Y., Commenge, J.M. and Luo, L. (2011a), "Uniform flows in rectangular lattice networks", Chem. Eng. Sci., 66, 5301-5312. https://doi.org/10.1016/j.ces.2011.07.027
  25. Tondeur, D., Fan, Y. and Luo, L.G. (2011b), "Flow distribution and pressure drop in 2D meshed channel circuits", Chem. Eng. Sci., 66, 15-26. https://doi.org/10.1016/j.ces.2010.09.024
  26. Tondeur, D., Fan, Y., Commenge, J.M. and Luo, L. (2011c), "Flow and pressure distribution in linear discrete "ladder-type" fluidic circuits: an analytical approach", Chem. Eng. Sci., 66, 2568-2586. https://doi.org/10.1016/j.ces.2011.03.003
  27. Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S. and White, S.R. (2007), "Self-healing materials with microvascular networks", Nat. Mater., 6, 581-585. https://doi.org/10.1038/nmat1934
  28. Ucar, A.B. and Velev, O.D. (2012), "Microfluidic elastomer composites with switchable vis-IR transmittance", Soft Matter, 8, 11232-11235. https://doi.org/10.1039/c2sm26635k
  29. Wang, H., Iovenitti, P., Harvey, E. and Masood, S. (2002), "Optimizing layout of obstacles for enhanced mixing in microchannels", Smart Mater. Struct., 11, 662-667. https://doi.org/10.1088/0964-1726/11/5/306
  30. Wang, J. (2011), "Theory of flow distribution in manifolds", Chem. Eng. J., 168, 1331-1345. https://doi.org/10.1016/j.cej.2011.02.050
  31. Wang, K.M., Lorente, S. and Bejan, A. (2007), "Vascularization with grids of channels: multiple scales, loops and body shapes", J. Phys. D: Appl. Phys., 40, 4740-4749. https://doi.org/10.1088/0022-3727/40/15/057
  32. Wu, W., Hansen, C.J., Aragon, A.M., Geubelle, P.H., White, S.R. and Lewis, J.A. (2009), "Direct-write assembly of biomimetic microvascular networks for efficient fluid transport", Soft Matter, 6, 739-742.