Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.3.397

Wave propagation and vibration of FG pipes conveying hot fluid  

Zhang, Yi-Wen (College of Mechanical and Vehicle Engineering, Chongqing University)
She, Gui-Lin (College of Mechanical and Vehicle Engineering, Chongqing University)
Publication Information
Steel and Composite Structures / v.42, no.3, 2022 , pp. 397-405 More about this Journal
Abstract
The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.
Keywords
conveying-fluid pipes; group velocity; phase velocity; vibration; wave propagation;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Analyzing FG shells with large deformations and finite rotations", World J. Eng., 16(5), 636-647. https://doi.org/10.1108/WJE-10-2018-0357.   DOI
2 She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.   DOI
3 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.   DOI
4 Tang, Y. and Yang, T. (2018), "Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material", Compos. Struct., 185, 393-400. http://dx.doi.org/10.1016/j.compstruct.2017.11.032.   DOI
5 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. http://dx.doi.org/10.12989/sss.2021.27.4.679.   DOI
6 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.   DOI
7 Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches", Aeros. Sci. Technol., 119, 107111. https://doi.org/10.1016/j.ast.2021.107111.   DOI
8 Sobhani, E., Masoodi, A.R. and Ahmadi-Pari, A.R. (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell", Compos. Struct., 273, 114281. https://10.1016/j.compstruct.2021.114281.   DOI
9 Tan, X., Ding, H., Sun, J.Q. and Chen, L.Q. (2020), "Primary and super-harmonic resonances of Timoshenko pipes conveying high-speed fluid", Ocean Eng., 203, 107258. http://dx.doi.org/10.1016/j.oceaneng.2020.107258.   DOI
10 Xiao, H., Yan, K.M. and She, G. (2021), "Study on the characteristics of wave propagation in functionally graded porous square plates", Geomech. Eng., 26(6), 607-615. http://dx.doi.org/10.12989/gae.2021.26.6.607.   DOI
11 Yang, J., Huang, X.H. and Shen, H.S. (2020a), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Thin Wall. Struct., 148, 106514. https://doi.org/10.1016/j.tws.2019.106514.   DOI
12 Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct. 38(3), 293-304. http://dx.doi.org/10.12989/scs.2021.38.3.293.   DOI
13 Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S. R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.   DOI
14 Lian, F., Yang, X.D., Zhang, W. and Qian, Y.J. (2018), "Nonlinear free vibration of spinning viscoelastic pipes conveying fluid", Int. J. Appl. Mech., 10(7), 1850076. http://dx.doi.org/10.1142/S175882511850076X.   DOI
15 Kirshenbaum, A.D., Cahill, J.A. and Grosse, A.V. (1961), "The density of liquid lead from the melting", J. Inorganic Nuclear Chemistry, 22(1-2), 33-38. https://doi.org/10.1016/0022-1902(61)80226-1.   DOI
16 Yang, J., Huang, X.H. and Shen, H.S. (2020b), "Nonlinear vibration of Temperature-Dependent FG-CNTRC laminated beams with negative Poisson's ratio", Int. J. Struct. Stab. Dyn., 20(04), 2050043. https://doi.org/10.1142/S0219455420500431.   DOI
17 Zarga, D., Tounsi, A., Bousahla, A. A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi 3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.   DOI
18 Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021b), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.   DOI
19 Zhu, B., Xu, Q., Li, M. and Li, Y. (2020), "Nonlinear free and forced vibrations of porous functionally graded pipes conveying fluid and resting on nonlinear elastic foundation", Compos. Struct., 252, 112672. http://dx.doi.org/10.1016/j.compstruct.2020.112672   DOI
20 Zhao, Q. and Sun, Z. (2018), "Flow-induced vibration of curved pipe conveying fluid by a new transfer matrix method", Eng. Appl. Comp. Fluid, 12(1), 780-790. http://dx.doi.org/10.1080/19942060.2018.1527725.   DOI
21 Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.03.   DOI
22 Li, J., Deng, H. and Jiang, W. (2019), "Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation", J. Vib. Control, 25(11), 1695-1705. http://dx.doi.org/10.1177/1077546319837789.   DOI
23 Heshmati, M. (2020), "Influence of an eccentricity imperfection on the stability and vibration behavior of fluid-conveying functionally graded pipes", Ocean Eng., 203, 107192. http://dx.doi.org/10.1016/j.oceaneng.2020.107192.   DOI
24 Hu, Y.J. and Zhu, W. (2018), "Vibration analysis of a fluidconveying curved pipe with an arbitrary undeformed configuration", Appl. Math. Model., 64, 624-642. http://dx.doi.org/10.1016/j.apm.2018.06.046.   DOI
25 Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
26 Li, Y.D. and Yang, Y.R. (2017), "Vibration analysis of conveying fluid pipe via He's variational iteration method", Appl. Math. Model., 43, 409-420. http://dx.doi.org/10.1016/j.apm.2016.11.029.   DOI
27 Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2021), "Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect", Continuum. Mech. Therm., https://doi.org/10.1007/s00161-021-01038-8.   DOI
28 Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.   DOI
29 Zhou, K., Xiong, F.R., Jiang, N.B., Dai, H.L., Yan, H., Wang, L. and Ni, Q. (2019), "Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink", Nonlinear Dyn., 95(2), 1435-1456. http://dx.doi.org/10.1007/s11071-018-4637-8.   DOI
30 Zhou, K., Ni, Q., Dai, H.L. and Wang, L. (2020), "Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation", J. Sound Vib., 471, 115189. http://dx.doi.org/10.1016/j.jsv.2020.115189.   DOI
31 Golmakani, M.E., Malikan, M. and Pour, S. G. (2021), "Bending analysis of functionally graded nanoplates based on a higherorder shear deformation theory using dynamic relaxation method", Continuum Mech. Thermodynamics, https://doi.org/10.1007/s00161-021-00995-4 .   DOI
32 Tan, X., Ding, H. and Chen, L.Q. (2019), "Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model", J. Sound Vib., 455, 241-255. http://dx.doi.org/10.1016/j.jsv.2019.05.019.   DOI
33 Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.   DOI
34 Malikan, M. and Eremeyev, V.A. (2021), "Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis", Compos. Struct., 271, 114179. https://doi.org/10.1016/j.compstruct.2021.114179.   DOI
35 Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021a), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin-walled Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.   DOI
36 Malikan, M. and Eremeyev, V.A. (2020), "A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition", Compos. Struct., 249, 112486. https://doi.org/10.1016/j.compstruct.2020.112486.   DOI
37 Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2021), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.   DOI
38 Liang, F., Yang, X.D., Qian, Y.J. and Zhang, W. (2018), "Transverse free vibration and stability analysis of spinning pipes conveying fluid", Int. J. Mech. Sci., 137, 195-204. http://dx.doi.org/10.1016/j.ijmecsci.2018.01.015.   DOI
39 Rezaiee-Pajand, M. and Masoodi, A.R. (2018a), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932.   DOI
40 Rezaiee-Pajand, M. and Masoodi, A.R. (2018b), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 24(9), 1787-1808. https://doi.org/10.1080/15376494.2020.1780524.   DOI
41 Meksi, A., Benyoucef, S., Sekkal, M., Bouiadjra, R.B., Selim, M. M., Tounsi, A. and Hussain, M. (2021), "Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading", Steel Compos. Struct., 39(2), 215-228. https://doi.org/10.12989/scs.2021.39.2.215.   DOI
42 Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.   DOI
43 Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. http://dx.doi.org/10.1177/1077546320947302.   DOI
44 Esen, I, Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136 (4), 458. http://dx.doi.org/10.1140/epjp/s13360-021-01419-7.   DOI
45 Cao, J., Liu, Y. and Liu, W. (2018), "The effect of two cases of temperature distributions on vibration of fluid-conveying functionally graded thin-walled pipes", J. Strain Anal. Eng. Des., 53(5), 030932471877059, 324-331. http://dx.doi.org/10.1177/0309324718770594.   DOI
46 Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020a), "Size dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135, 381. https://doi.org/10.1140/epjp/s13360--020020--0038500385-w.   DOI
47 Dai, J., Liu, Y., Liu, H., Miao, C. and Tong, G. (2019), "A parametric study on thermo-mechanical vibration of axially functionally graded material pipe conveying fluid", Int. J. Mech. Mater. Des., 15(3), 715-726. http://dx.doi.org/10.1007/s10999-018-09439-5.   DOI
48 Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B., (2020b), "Vibration analysis of carbon nanotube-reinforced composite nicrobeams", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.   DOI
49 Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.   DOI
50 Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. http://dx.doi.org/10.1016/j.ijengsci.2019.103141.   DOI
51 Ebrahimi, F. and Barati, M. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159(1), 174-182. http://doi.org/10.1016/j.compstruct.2016.09.058.   DOI
52 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI