• Title/Summary/Keyword: synchronous algorithm

Search Result 670, Processing Time 0.022 seconds

Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계)

  • Kim, Seong-Soo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계)

  • Park, Hyung-Moo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.

A Study on Performance Improvement of Active Noise Control Using Synchronous Sampling Method (동기화한 이산화법을 이용한 능동소음제어의 성능향상에 관한 연구)

  • Kim, Heung-Seob;Oh, Jae-Eung;Shin, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2523-2532
    • /
    • 1994
  • In this paper, active noise control is performed in a duct system using the periodic pulse train which corresponds to the periodic component of noise source as a reference signal. Control algorithm applied in this study is possible to eliminate the acoustic feedback which occurs in the conventional filtered-x and filtered-u LMS algorithm by using electrical reference signal and has the fast adaptation speed with low filter orders by using synchronous sampling method is discussed via computer simulations and experiments of case studies such as frequency modulation, amplitude modulation and frequency differency between source signal and reference signal.

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Abbasian, Mohammadali;Isfahani, Arash Hassanpour
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.

A Study on Fault Characteristic According Open Fault of Synchronous Motor (동기전동기의 개방고장에 따른 고장특성에 관한 연구)

  • Kim, Hoe-Cheon;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.109-115
    • /
    • 2012
  • Recently, permanent magnet synchronous motor are applied to various applications. Because of the importance of high reliable operation in these areas, many research related to the fault detection and diagnosis of inverter system are conducted. So, a faults model for an inverter-driven permanent magnet synchronous motor is studied by using the fault current of motor according to switch open, which can be effectively used for performance evaluation of the diagnostic algorithm. And fault of the permanent magnet synchronous motor inverter drive system is divided into four types. The feasibility of the proposed method are improved by simulation and experiment.

Reducing False Alarms in Schizophrenic Parallel Synchronizer Detection for Esterel (Esterel에서 동기장치 중복사용 문제 검출시 과잉 경보 줄이기)

  • Yun, Jeong-Han;Kim, Chul-Joo;Kim, Seong-Gun;Han, Tai-Sook
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.647-652
    • /
    • 2010
  • Esterel is an imperative synchronous language well-adapted to control-intensive systems. When an Esterel program is translated to a circuit, the synchronizer of a parallel statement may be executed more than once in a clock; the synchronizer is called schizophrenic. Existing compilers cure the problems of schizophrenic parallel synchronizers using logic duplications. This paper proposes the conditions under which a synchronizer causes no problem in circuits when it is executed more than once in a clock. In addition we design a detection algorithm based on those conditions. Our algorithm detects schizophrenic parallel synchronizers that have to be duplicated in Esterel source codes so that compilers can save the size of synthesized circuits

Sensorless Control Algorithm of a Surface Mounted PM Synchronous Motor Under Naturally Rotating by Load (외부부하에 의해 회전중인 표면부착형 영구자석동기전동기의 센서리스 제어 알고리즘)

  • Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • PM synchronous motor may be rotated to an arbitrary direction and speed by outside wind under natural condition in cases where the fan is applied outside, such as in vehicle radiators and outdoor air-conditioners. Sensorless controls that cannot detect rotor position requires additional sensorless control algorithm because a rotor is rotated by an external load. In this study, the sensorless control of a PM synchronous motor under naturally rotating condition is proposed. The natural rotation conditions are classified as forward high-speed rotation, reverse high-speed rotation, and low-speed rotation. Experiment results verify the performance of the sensorless control, including the rotor speed and position detection at natural rotation mode and switch to the closed-loop sensorless control.

A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters (단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구)

  • Hwang, Seon-Hwan;Hwang, Young-Gi;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

A Novel Parameter Estimation Algorithm for Interior Permanent-Magnet Synchronous Motors (매입형 영구자석 동기전동기를 위한 새로운 전동기 상수 추정 방법)

  • Lim, Dong-Chan;Lee, Dong-Myung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.289-295
    • /
    • 2013
  • It is important to know exact values of Interior Permanent Magnet Synchronous Motors(IPMSM)' parameters such as stator resistance and inductance in order to have their high performance. This paper proposes a novel motor parameter(stator resistance, d&q axis inductance) estimation algorithm for IPMSM. The proposed estimation method utilizes back-EMF equations and model reference adaptive system(MRAS). The algorithm using back-EMF estimates d and q axis inductances in the constant torque region, and the stator resistance is estimated by using MRAS with the estimated inductance regardless of speed regions. The validity of the proposed algorithm is verified by simulations and experiments.

A Study on the New Sensorless Control Algorithm for Permanent Magnet Synchronous Motor (영구자석 동기전동기의 새로운 센서리스 제어 알고리즘에 관한 연구)

  • Jun, Byoung-Ho;Choi, Yang-Kwang;Kim, Young-Seok;Han, Yoon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.144-146
    • /
    • 2003
  • This paper presents a new speed sensorless control algorithm of a permanent magnet synchronous motor based on instantaneous reactive power. The proposed algorithm is constructed by instantaneous reactive power in the stationary reference frame and is not affected by mechanical motor parameters, because mechanical equation is not used. The effectiveness of the proposed algorithm is verified by the experimental results.

  • PDF