Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.379

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems  

Abbasian, Mohammadali (Faculty of Engineering, Islamic Azad University)
Isfahani, Arash Hassanpour (Faculty of Engineering, Islamic Azad University)
Publication Information
Abstract
This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.
Keywords
permanent magnet synchronous generator; direct-drive; wind energy conversion system; optimization; genetic algorithm; payback period;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 X. Sun, M. Cheng, W. Hua, and L. Xu, IEEE Trans. Magn. 45, 4613 (2009).   DOI   ScienceOn
2 E. Spooner, A. C. Williamson, and G. Catto, IEE Proc. Electr. Power Appl. 143, 1 (1996).   DOI   ScienceOn
3 M. A. Khan, Ph. D. dissertation, Dept. Elec. and Comp. Eng., Clarkson Univ., Potsdam, NY (2006).
4 Iranian Renewable Energy Organization (SUNA), Tehran, Iran (2010).
5 A. Mostafaeipoura, A. Sedaghatb, A. A. Dehghan-Niri, and V. Kalantarc, Renewable and Sustainable Energy Reviews 15, 2545 (2011).   DOI   ScienceOn
6 T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Handbook, John Wiley & Sons, West Sussex (2001).
7 A. H. Isfahani and S. Vaez-Zadeh, J. Energy 34, 1755 (2009).   DOI   ScienceOn
8 M. Arifujjaman, M. T. Iqbal, and J. E. Quaicoe, J. Applied Energy 86, 1617 (2009).   DOI   ScienceOn
9 M. Mazandarani, T. M. I. Mahlia, W. T. Chong, and M. Moghavvemi, Renewable and Sustainable Energy Reviews 14, 1814 (2010).   DOI   ScienceOn
10 H. Ghorashi and A. Rahimi, Renewable and Sustainable Energy Reviews 15, 729 (2011).   DOI   ScienceOn
11 J. R. Bumby and R. Martin, IEE Proc. Electr. Power Appl. 152, 1065 (2005).   DOI   ScienceOn
12 Y. Chen, P. Pillay, and A. Khan, IEEE Trans. Ind. Appl. 41, 1619 (2005).   DOI   ScienceOn
13 L. Soderlund and J.-T. Eriksson, IEEE Trans. Magn. 32, 2389 (1996).   DOI   ScienceOn
14 M. Abbasian, A. H. Isfahani, S. Shahghasemi, and F. Sheikholeslam, Przeglad Elektrotechniczny 87, 360 (2011).
15 J. Chen, C. V. Nayar, and L. Xu, IEEE Trans. Magn. 36, 3802 (2000).   DOI   ScienceOn
16 H. Jung, C.-G. Lee, S.-C. Hahn, and S.-Y. Jung, J. Electrical Engineering & Technology 3, 552 (2008).   DOI   ScienceOn
17 S.-Y. Jung, H. Jung, S.-C. Hahn, H.-K. Jung, and C.-G. Lee, IEEE Trans. Magn. 44, 1062 (2008).   DOI   ScienceOn
18 S. Eriksson and H. Bernhoff, Applied Energy 88, 265 (2011).   DOI   ScienceOn
19 J. L. F. Vanderveen, L. J. J. Offringa, and A. J. A. Vandenput, IEE Proc. Electr. Power Appl. 144, 331 (1997).   DOI   ScienceOn
20 J. Zhang, M. Cheng, and Z. Chen, J. Energy Conversion and Management 49, 2100 (2008).   DOI   ScienceOn