• Title/Summary/Keyword: symmetric structure

Search Result 554, Processing Time 0.026 seconds

Improvement of Attenuation Characteristics for Multiple Coupled Line Structure on the Specific Lossy Media (특정 손실 매질위의 다중 결합선로에 대한 손실특성 개선)

  • Kim, Yoon-Suk;Kim, Min-Su
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.12
    • /
    • pp.35-41
    • /
    • 2011
  • In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain(FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Parameters of symmetric coupled MIS transmission line with various gaps between crossbars for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

Vibrational behavior of porous composite laminated plates using four unknown integral shear deformation theory

  • Hayat Saidi;Abdelouahed Tounsi;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi;Firas Ismail Salman Al-Juboori
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.249-271
    • /
    • 2024
  • In this scientific work, an analytical solution for the dynamic analysis of cross-ply and angle-ply laminated composite plates is proposed. Due to technical issues during the manufacturing of composite materials, porosities and micro-voids can be produced within the composite material samples, which can carry on to a reduction in the density and strength of the materials. In this research, the laminated composite plates are assumed to have new distributions of porosities over the plate cross-section. The structure is modeled using a simple integral shear deformation theory in which the transverse shear deformation effect is included. The governing equations of motion are obtained employing the principle of Hamilton's. The solution is determined via Navier's approach. The Maple program is used to obtain the numerical results. In the numerical examples, the effects of geometry, ratio, modulus ratio, fiber orientation angle, number of layers and porosity parameter on the natural frequencies of symmetric and anti-symmetric laminated composite plates is presented and discussed in detail. Also, the impacts of the kinds of porosity distribution models on the natural frequencies of symmetric and anti-symmetric laminated composite plates are investigated.

THE SYMMETRY OF spin DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS

  • HONG, KYUSIK;SUNG, CHANYOUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1037-1049
    • /
    • 2015
  • It is well-known that the spectrum of a $spin^{\mathbb{C}}$ Dirac operator on a closed Riemannian $spin^{\mathbb{C}}$ manifold $M^{2k}$ of dimension 2k for $k{\in}{\mathbb{N}}$ is symmetric. In this article, we prove that over an odd-dimensional Riemannian product $M^{2p}_1{\times}M^{2q+1}_2$ with a product $spin^{\mathbb{C}}$ structure for $p{\geq}1$, $q{\geq}0$, the spectrum of a $spin^{\mathbb{C}}$ Dirac operator given by a product connection is symmetric if and only if either the $spin^{\mathbb{C}}$ Dirac spectrum of $M^{2q+1}_2$ is symmetric or $(e^{{\frac{1}{2}}c_1(L_1)}{\hat{A}}(M_1))[M_1]=0$, where $L_1$ is the associated line bundle for the given $spin^{\mathbb{C}}$ structure of $M_1$.

A Study on the Structure of Axial-Symmetric Two-Phase Spray and Flame (축대칭 이류체 분무화염의 구조에 관한 연구)

  • Jung, Bo-Yoon;Ko, Dae-Kwon;Ahn, Soo-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 1988
  • Boilers and diesel engines have many problems because their exhaust particles, i.e., soot have lots of bad influence on environment. And it's spray and flame have fundamentally axial symmetric shape. To investigate the relationship between fuel concentration distribution of spray and soot concentration distribution as well as temperature distribution of flame, we made a axial symmetric two phase spray-flame and analyzed the structure of is. The measuring method is the principle of the light extinction method for the spray-flame and onion peeling model is applied to analyze the radial distribution of fuel and soot concentration. The temperature of flame is measured by ø 0.4mm Pt-Pt.RH 3% thermocouple. The oils for the experiments are diesel oil and 10% water emulsified diesel oil. It was found that the soot concentration becomes higher as it comes near to the center of flame, and the fuel concentration does, too. And the soot concentration level of diesel oil is generally higher than that of the 10% water emulsified fuel. The maximum flame temperature of diesel oil is 1,17$0^{\circ}C$, however, 10% water emulsified diesel oil is 1,27$0^{\circ}C$.

  • PDF

Tropical Cyclone Track and Intensity Forecast Using Asymmetric 3-Dimensional Bogus Vortex (비축대칭 3차원 모조 소용돌이를 이용한 열대저기압의 진로 및 강도예측)

  • Lee, Jae-Deok;Cheong, Hyeong-Bin;Kang, Hyun-Gyu;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.207-223
    • /
    • 2014
  • The bogussing method was further developed by incorporating the asymmetric component into the symmetric bogus tropical cyclone of the Structure Adjustable Balanced Vortex (SABV). The asymmetric component is separated from the disturbance field associated with the tropical cyclone by establishing local polar coordinates whose center is the location of the tropical cyclone. The relative importance of wave components in azimuthal direction was evaluated, and only two or three wave components with large amplitude are added to the symmetric components. Using the Weather Research and Forecast model (WRF), initialized with the asymmetric bogus vortex, the track and central pressure of tropical cyclones were predicted. Nine tropical cyclones, which passed over Korean peninsula during 2010~2012 were selected to assess the effect of asymmetric components. Compared to the symmetric bogus tropical cyclone, the track forecast error was reduced by about 18.9% and 17.4% for 48 hours and 72 hours forecast, while the central pressure error was not improved significantly. The results suggest that the inclusion of asymmetric component is necessary to improve the track forecast of tropical cyclones.

Critical buckling moment of functionally graded tapered mono-symmetric I-beam

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.599-614
    • /
    • 2021
  • This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.

Study on Frequency Characteristics for Double-Layer Symmetric Spiral Inductor (2층 대칭 나선형 인덕터에 대한 주파수 특성 연구)

  • Kim, Jae-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.315-320
    • /
    • 2022
  • In the case of a general spiral inductor, the orientation of the port is affected as it has an asymmetric structure. In this paper, double-layer spiral inductor that can have a symmetrical structure is proposed, and the simulation and frequency characteristics are analyzed. Compared to the conventional single-layer symmetrical inductor having an inductance of 3.9~4.2nH, the proposed double-layer symmetric spiral inductor has an inductance of 11~12nH in 0.3~1.2GHz frequency range, a quality factor of about 4.4 in 800MHz, and a self-resonant frequency of about 2.7~2.8GHz without changing the port. Compared to the general spiral inductor having a large difference depending on the port, it was confirmed that the influence on the port direction was small.

Electrical Characteristics of Single-silicon TFT Structure with Symmetric Dual-gate for Kink Effect Suppression

  • Kang Ey-Goo;Lee Dae-Yeon;Lee Chang-Hun;Kim Chang-Hun;Sung Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.53-57
    • /
    • 2006
  • In this paper, a Symmetric Dual-gate Single-Si TFT, which includes three split floating n+ zones, is simulated. This structure drastically reduces the kink-effect and improves the on-current. This is due to the separated floating n+ zones, the transistor channel region is split into four zones with different lengths defined by a floating n+ region. This structure allows effective reduction in the kink-effect, depending on thy length of the two sub-channels. The on-current of the proposed dual-gate structure is 0.9 mA, while that of the conventional dual-gate structure is 0.5 mA, at both 12 V drain and 7 V gate voltages. This result shows an 80% enhancement in on-current. In addition, the reduction of electric field in the channel region compared to a conventional single-gate TFT and the reduction of the output conductance in the saturation region, is observed. In addition, the reduction in hole concentration, in the channel region, in order for effectively reducing the kink-effect, is also confirmed.

Single-silicon TFT Structure for Kink-effect Suppression with Symmetric Dual-gate by Three Split floating N+ Zones (Kink-effect 개선을 위한 세 개의 분리된 N+ 구조를 지닌 대칭형 듀얼 게이트 단결정 TFT 구조에 대한 연구)

  • Lee, Dae-Yeon;Hwang, Sang-Jun;Park, Sang-Won;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.423-430
    • /
    • 2005
  • In this paper, we have simulated a Symmetric Dual-gate Single-Si TFT which has three split floating $n^{+}$ zones. This structure reduces the kink-effect drastically and improves the on-current. Due to the separated floating $n^{+}$ zones, the transistor channel region is split into four zones with different lengths defined by a floating $n^{+}$ region. This structure allows an effective reduction of the kink-effect depending on the length of two sub-channels. The on-current of the proposed dual-gate structure is 0.9 mA while that of the conventional dual-gate structure is 0.5 mA at a 12 V drain voltage and a 7 V gate voltage. This results show a $80 {\%}$ enhancement in on-current by adding two floating $n^{+}$ zones. Moreover we observed the reduction of electric field In the channel region compared to conventional single-gate TFT and the reduction of the output conductance in the saturation region. In addition we also confirmed the reduction of hole concentration in the channel region so that the kink-effect reduces effectively.